Advertisement

Theoretical Chemistry Accounts

, 132:1396 | Cite as

Probing the performances of HISS functionals for the description of excited states of molecular systems

  • Romain Paulino Neto
  • Denis Jacquemin
  • Carlo Adamo
  • Ilaria CiofiniEmail author
Regular Article

Abstract

The performances of two range-separated functionals (HISS-A and HISS-B), recently developed by Savin and collaborators, and including a fraction of HF exchange for an intermediate range of interelectronic distance, have been tested for the prediction of vertical excited state energies over three benchmark sets of molecules mainly probing valence and intramolecular charge-transfer transitions in small- to medium-size organic compounds. The results obtained show that HISS-B outperforms HISS-A providing results that are, for singlet-to-singlet excitations, at least in line with those of more traditional long-range-separated hybrids such as LC-PBE or CAM-B3LYP possessing the correct asymptotic behavior and, in the case of larger compounds, close to those provided by global hybrids.

Keywords

DFT TD-DFT Intermediate range-separated hybrids Excited states 

Notes

Acknowledgments

The authors are indebted to the COST program CODECS and its members for support and many helpful discussions, respectively. D. J. acknowledges both the European Research Council (ERC) and the Région des Pays de la Loire for financial support in the framework of a Starting Grand (Marches—278845) and recrutement sur poste stratégique, respectively.

Supplementary material

214_2013_1396_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 kb)

References

  1. 1.
    Isegawa M, Peverati R, Truhlar DG (2012) J Chem Phys 137:244104CrossRefGoogle Scholar
  2. 2.
    Leang SS, Zahariev F, Gordon MS (2012) J Chem Phys 136:104101CrossRefGoogle Scholar
  3. 3.
    Send R, Kuhn M, Furche F (2011) J Chem Theory Comput 7:2376CrossRefGoogle Scholar
  4. 4.
    Goerigk L, Moellmann J, Grimme S (2009) Phys Chem Chem Phys 11:4611CrossRefGoogle Scholar
  5. 5.
    Caricato M, Trucks GW, Frisch MJ, Wiberg KB (2010) J Chem Theory Comput 6:370CrossRefGoogle Scholar
  6. 6.
    Jacquemin D, Perpète E, Ciofini I, Adamo C (2009) Acc Chem Res 42:326–334CrossRefGoogle Scholar
  7. 7.
    Laurent AD, Jacquemin D (2013) Int J Quantum Chem. doi: 10.1002/qua.24438 Google Scholar
  8. 8.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544CrossRefGoogle Scholar
  9. 9.
    Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207–8215CrossRefGoogle Scholar
  10. 10.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  11. 11.
    Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109CrossRefGoogle Scholar
  12. 12.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  13. 13.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  14. 14.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  15. 15.
    Becke AD (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  16. 16.
    Henderson TM, Izmaylov AF, Scuseria GE, Savin A (2007) J Chem Phys 127:221103CrossRefGoogle Scholar
  17. 17.
    Henderson TM, Izmaylov AF, Scuseria GE, Savin A (2008) J Chem Theory Comput 4:1254–1262CrossRefGoogle Scholar
  18. 18.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126–13130CrossRefGoogle Scholar
  20. 20.
    Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W (2008) J Chem Phys 129:104103CrossRefGoogle Scholar
  21. 21.
    Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) J Chem Theory Comput 5:2420–2435CrossRefGoogle Scholar
  22. 22.
    Le Bahers T, Pauporté T, Scalmani G, Adamo C, Ciofini I (2009) Phys Chem Chem Phys 11:11276–11284CrossRefGoogle Scholar
  23. 23.
    Warnan J, Favereau L, Pellegrin Y, Blart E, Jacquemin D, Odobel F (2011) J Photochem Photobiol, A 226:9–15CrossRefGoogle Scholar
  24. 24.
    Jacquemin D, Perpète EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG (2010) J Chem Theory Comput 6:2071–2085CrossRefGoogle Scholar
  25. 25.
    Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129CrossRefGoogle Scholar
  26. 26.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  27. 27.
    Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14:11363CrossRefGoogle Scholar
  28. 28.
    Peach MJG, Tozer DJ (2012) J Phys Chem A 116:9783CrossRefGoogle Scholar
  29. 29.
    Sears JS, Koerzdoerfer T, Zhang CR, Brédas JL (2011) J Chem Phys 135:151103CrossRefGoogle Scholar
  30. 30.
    Peach MJG, Williamson MJ, Tozer DJ (2011) J Chem Theory Comput 7:3578–3585CrossRefGoogle Scholar
  31. 31.
    Jacquemin D, Perpète EA, Ciofini I, Adamo C (2010) J Chem Theory Comput 6:1532–1537CrossRefGoogle Scholar
  32. 32.
    Jacquemin D, Perpète EA, Vydrov OA, Scuseria GE, Adamo C (2007) J Chem Phys 127:094102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Romain Paulino Neto
    • 1
  • Denis Jacquemin
    • 2
    • 3
  • Carlo Adamo
    • 1
    • 3
  • Ilaria Ciofini
    • 1
    Email author
  1. 1.LECIME, Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation Pour l’EnergieCNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, Chimie ParisTechParis Cedex 05France
  2. 2.Laboratoire CEISAM, UMR CNRS 6230Université de NantesNantes Cedex 3France
  3. 3.Institut Universitaire de FranceParisFrance

Personalised recommendations