Theoretical Chemistry Accounts

, 132:1390 | Cite as

Theoretical study of the conformational equilibrium of 1,4-dioxane in gas phase, neat liquid, and dilute aqueous solutions

  • Rute Barata-Morgado
  • M. Luz SánchezEmail author
  • Ignacio Fdez. Galván
  • José C. Corchado
  • M. Elena Martín
  • Aurora Muñoz-Losa
  • Manuel A. Aguilar
Regular Article


The conformational equilibrium of 1,4-dioxane in the gas phase, in the pure liquid, and in aqueous solution has been studied by means of the Average Solvent Electrostatic Potential from Molecular Dynamics (ASEP/MD) method and the Integral Equation Formalism for the Polarizable Continuum Model (IEF-PCM). The dioxane molecule was described at the DFT(B3LYP)/aug-cc-pVTZ level. In the three phases, the equilibrium is almost completely shifted toward the chair conformer, with populations of the twist-boat conformers lower than 0.01 %. The equilibrium is dominated by the internal energy of the molecule, as the solute–solvent interaction free energies are very similar in the three conformers considered (chair, 1,4 twist-boat, and 2,5 twist-boat). In the pure liquid, where the dioxane–dioxane interaction is dominated by the Lennard-Jones term, the structure is characteristic of a van der Waals liquid. However, the decrease in the C–H distance from gas phase to solution, the increase in the C–H vibrational frequencies, and the presence of a shoulder in the O–Haxial pair radial distribution function point to the presence of a weak C–H–O hydrogen bond. The analysis of the occupancy maps of water oxygen and hydrogen atoms around the 1,4-dioxane molecule confirms this conclusion. Contrary to what is found in small water-dioxane clusters, in the liquid, there is a preference for oxygen atoms to interact with axial hydrogen atoms to form C–H–O hydrogen bonds. Comparison of ASEP/MD and IEF-PCM results indicates that including specific interactions is very important for an adequate description of the solute–solvent interaction; however, the influence of these interactions does not translate in changes in the relative stability of the conformers because it cancels out when energy differences are calculated.


1,4-Dioxane ASEP/MD QM/MM Conformational equilibrium Solvent effect 



This work was supported by the Gobierno de Extremadura and the European Social Fund.

Supplementary material

214_2013_1390_MOESM1_ESM.xlsx (37 kb)
Supplementary material 1 (XLSX 36 kb)


  1. 1.
    Yang TC, Ning CG, Su GL, Deng JK, Zhang SF, Ren XG, Huang YR (2006) Chin Phys Lett 23:1157–1160CrossRefGoogle Scholar
  2. 2.
    Senthilkumar K, Kolandaivel P (2003) Comput Biol Chem 27:173–183CrossRefGoogle Scholar
  3. 3.
    Pickett LW, Hoeflich NJ, Liu TC (1951) J Am Chem Soc 73:4865–4869CrossRefGoogle Scholar
  4. 4.
    Mizuno K, Imafuji S, Fujiwara T, Ohta T, Tamiya Y (2003) J Phys Chem B 107:3972–3978CrossRefGoogle Scholar
  5. 5.
    Takamuku T, Yamaguchi A, Tabata M, Yoshida K, Wakita H, Yamaguchi T (1999) J Mol Liq 83:163–177CrossRefGoogle Scholar
  6. 6.
    Ahn-Ercan G, Krienke H, Schmeer G (2006) J Mol Liq 129:75–79CrossRefGoogle Scholar
  7. 7.
    Chapman DM, Hester RE (1997) J Phys Chem A 101:3382–3387CrossRefGoogle Scholar
  8. 8.
    Nagy PI, Volgyi G, Takacs-Novak K (2008) J Phys Chem B 112:2085–2094CrossRefGoogle Scholar
  9. 9.
    Krienke H, Ahn-Ercan G, Barthel J (2004) J Mol Liq 109:115–124CrossRefGoogle Scholar
  10. 10.
    Cinacchi G, Ingrosso F, Tani A (2006) J Phys Chem B 110:13633–13641CrossRefGoogle Scholar
  11. 11.
    Takamuku T, Yamaguchi A, Matsuo D, Tabata M, Yamaguchi T, Otomo T, Adachi T (2001) J Phys Chem B 105:10101–10110CrossRefGoogle Scholar
  12. 12.
    Pchelkin VN, Toryanik AI (1991) Zh Strukt Khim 32(2):88–97Google Scholar
  13. 13.
    Chang HC, Jiang JC, Chuang CW, Lin JS, Lai WW, Yang YC, Lin SH (2005) Chem Phys Lett 410:42–48CrossRefGoogle Scholar
  14. 14.
    Fdez. Galván I, Sánchez ML, Martín ME, Olivares del Valle FJ, Aguilar MA (2003) Comput Phys Commun 155:244–259CrossRefGoogle Scholar
  15. 15.
    García Prieto FF, Fdez-Galván I, Aguilar MA, Martín ME (2011) J Chem Phys 135:194502–194510CrossRefGoogle Scholar
  16. 16.
    Corchado JC, Sánchez ML, Aguilar MA (2004) J Am Chem Soc 126:7311–7319CrossRefGoogle Scholar
  17. 17.
    Sánchez ML, Martín ME, Aguilar MA, Olivares del Valle FJ (2000) J Comput Chem 21:705–715CrossRefGoogle Scholar
  18. 18.
    Martín ME, Sánchez ML, Olivares del Valle FJ, Aguilar MA (2002) J Chem Phys 116:1613–1620CrossRefGoogle Scholar
  19. 19.
    Sánchez ML, Martín ME, Fdez Galván I, Olivares del Valle FJ, Aguilar MA (2002) J Phys Chem B 106:4813–4817CrossRefGoogle Scholar
  20. 20.
    Fdez. Galván I, Sánchez ML, Martín ME, Olivares del Valle FJ, Aguilar MA (2003) J Chem Phys 118:255–263CrossRefGoogle Scholar
  21. 21.
    Fdez. Galván I, Martín ME, Aguilar MA (2004) J Comput Chem 25:1227–1233CrossRefGoogle Scholar
  22. 22.
    Sánchez ML, Aguilar MA, Olivares del Valle FJ (1997) J Comput Chem 18:313–322CrossRefGoogle Scholar
  23. 23.
    Aguilar MA, Sánchez ML, Martín ME, Fdez. Galván I (2007) An effective hamiltonian method from simulations: ASEP/MD. In: Mennucci, B, Cammi R (eds) Continuum solvation models in chemical physics, 1st edn. Wiley, West Sussex, England, chapter 4.5, pp 580–592Google Scholar
  24. 24.
    Warshel A, Levitt M (1976) J Mol Biol 103:227–249CrossRefGoogle Scholar
  25. 25.
    Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700–733CrossRefGoogle Scholar
  26. 26.
    Luzhkov V, Warshel A (1992) J Comput Chem 13:199–213CrossRefGoogle Scholar
  27. 27.
    Gao J (1992) J Phys Chem 96:537–540CrossRefGoogle Scholar
  28. 28.
    Vasilyev VV, Bliznyuk AA, Voityuk AA (1992) Int J Quantum Chem 44:897–930CrossRefGoogle Scholar
  29. 29.
    Théry V, Rinaldi D, Rivail JL, Maigret B, Ferenczy GG (1994) J Comput Chem 15:269–282CrossRefGoogle Scholar
  30. 30.
    Thompson MA, Glendening ED, Feller D (1994) J Phys Chem 98:10465–10476CrossRefGoogle Scholar
  31. 31.
    Muñoz Losa A, Fdez. Galván I, Martín ME, Aguilar MA (2006) J Phys Chem B 110:18064–18071CrossRefGoogle Scholar
  32. 32.
    Chandrasekhar J, Smith SF, Jorgensen WL (1985) J Am Chem Soc 107:154–163CrossRefGoogle Scholar
  33. 33.
    Chandrasekhar J, Jorgensen WL (1985) J Am Chem Soc 107:2974–2975CrossRefGoogle Scholar
  34. 34.
    Jorgensen WL (1989) Acc Chem Res 22:184–189CrossRefGoogle Scholar
  35. 35.
    Okuyama-Yoshida N, Nagaoka M, Yamabe T (1998) Int J Quantum Chem 70:95–103CrossRefGoogle Scholar
  36. 36.
    Wei D, Salahub DR (1994) Chem Phys Lett 224:291–296CrossRefGoogle Scholar
  37. 37.
    Tuñón I, Martins-Costa MTC, Millot C, Ruiz-López MF, Rivail JL (1996) J Comput Chem 17:19–29CrossRefGoogle Scholar
  38. 38.
    Wesolowski TA, Warshel A (1993) J Phys Chem 97:8050–8053CrossRefGoogle Scholar
  39. 39.
    Wesolowski TA, Muller RP, Warshel A (1996) J Phys Chem 100:15444–15449CrossRefGoogle Scholar
  40. 40.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  41. 41.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford, CTGoogle Scholar
  42. 42.
    Refson K (2000) Comput Phys Commun 126:310–329CrossRefGoogle Scholar
  43. 43.
    Chirlian LE, Breneman CM, Francl MM (1987) J Comput Chem 8:894–905CrossRefGoogle Scholar
  44. 44.
    Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373CrossRefGoogle Scholar
  45. 45.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  46. 46.
    Martín ME, Sánchez ML, Olivares del Valle FJ, Aguilar MA (2002) J Chem Phys 116(4):1613–1620CrossRefGoogle Scholar
  47. 47.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38CrossRefGoogle Scholar
  48. 48.
    Hernandez GJ, Duncan ABF (1962) J Chem Phys 36:1504–1508CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rute Barata-Morgado
    • 1
  • M. Luz Sánchez
    • 1
    Email author
  • Ignacio Fdez. Galván
    • 1
    • 2
  • José C. Corchado
    • 1
  • M. Elena Martín
    • 1
  • Aurora Muñoz-Losa
    • 1
  • Manuel A. Aguilar
    • 1
  1. 1.Área de Química Física, Edif. José María Viguera LoboUniversidad de ExtremaduraBadajozSpain
  2. 2.Department of Chemistry, Ångström, The Theoretical Chemistry ProgrammeUppsala UniversityUppsalaSweden

Personalised recommendations