Theoretical Chemistry Accounts

, 132:1300 | Cite as

Electronic structure analysis of small gold clusters Au m (m ≤ 16) by density functional theory

  • Giuseppe Zanti
  • Daniel Peeters
Regular Article
Part of the following topical collections:
  1. Theoretical and Computational Chemistry in Belgium Collection


Small gold clusters Au m (m ≤ 16) were analyzed step by step using the density functional theory at B3LYP level with a Lanl2DZ pseudopotential to understand the rules governing the structures obtained for the most stable clusters. After a characterization by means of the NBO population analysis and spin densities, the particular electronic structure of such species was confronted to their structural parameters and stability. It appears that the most stable structures can be described in an original way through resonance structures resulting from an analysis of Au m clusters into dimeric Au2 subunits. These are arranged so as to promote: 1. A good overlap between bonding σ and anti-bonding σ* areas belonging to different Au2 units. 2. A cyclic flow of electrons over the whole cluster. This model uses relatively simple chemical concepts in order to justify most of the structures already found in the literature as well as to establish a new approach explaining the structural transition from two- to three-dimensional configurations.


Clusters Gold Density functional calculations Electronic structure 



This work was supported by FRIA-F.N.R.S. (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture-Belgium, fellowship to G.Z.), and F.R.S.-FNRS by its support to access computational facilities (Project FRFC N°2.4502.05 “Simulation numérique. Application en physique de l’état solide, océanographie et dynamique des fluides”).

Supplementary material

214_2012_1300_MOESM1_ESM.doc (64 kb)
Supplementary material 1 (DOC 63 kb)


  1. 1.
    Moskovits M (1991) Annu Rev Phys Chem 42:465–469CrossRefGoogle Scholar
  2. 2.
    Pyykkö P (2004) Angew Chem Int Ed 43:4412–4456CrossRefGoogle Scholar
  3. 3.
    Pyykkö P (2005) Inorg Chim Acta 358:4113–4130CrossRefGoogle Scholar
  4. 4.
    Schwerdtfeger P (2003) Angew Chem Int Ed 42:1892–1895CrossRefGoogle Scholar
  5. 5.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607–608CrossRefGoogle Scholar
  6. 6.
    Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Nature 382:609–611CrossRefGoogle Scholar
  7. 7.
    Haruta M (2002) CATTECH 6:102–115CrossRefGoogle Scholar
  8. 8.
    Haruta M (2004) Gold Bull 37:27–36CrossRefGoogle Scholar
  9. 9.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309CrossRefGoogle Scholar
  10. 10.
    Haruta M (2003) Chem Lett 3:75–87Google Scholar
  11. 11.
    Haruta M (2007) T. Ishida. Angew Chem Int Ed 46:7154–7156CrossRefGoogle Scholar
  12. 12.
    Meyer M, Lemire C, Shaikhutdinov S, Freud HJ (2004) Gold Bull 37:72–124CrossRefGoogle Scholar
  13. 13.
    Lemire C, Meyer R, Shaikhutdinov S, Freud HJ (2004) Angew Chem Int Ed 43:118–121Google Scholar
  14. 14.
    Lemire C, Meyer R, Shaikhutdinov S, Freud HJ (2004) Surf Sci 552:27–34CrossRefGoogle Scholar
  15. 15.
    Jortner J, Phys Z (1992) D At Mol Clusters 24:247–275CrossRefGoogle Scholar
  16. 16.
    Arenz M, Gil S, Heinz U (2007) Chem Phys Solid Surf 12:1–47CrossRefGoogle Scholar
  17. 17.
    Heiz U, Sanchez A, Abbet S, Schneider WD (1999) Eur Phys J D 9:35–39CrossRefGoogle Scholar
  18. 18.
    Sanchez A, Abbet S, Heiz U, Schneider WD, Häkkinen H, Barnett RN, Landman U (1999) J Phys Chem A 103:9573–9578CrossRefGoogle Scholar
  19. 19.
    Häkkinen H, Landman U (2000) Phys Rev B 62:2287–2290CrossRefGoogle Scholar
  20. 20.
    Wang J, Wang G, Zhao J (2002) Phys Rev B 66:035418-1–035418-6Google Scholar
  21. 21.
    Sierralta N, Rincon L, Almeida R (2003) Mater Condens 49:164–167Google Scholar
  22. 22.
    Xiao L, Wang L (2004) Chem Phys Lett 392:452–455CrossRefGoogle Scholar
  23. 23.
    Remacle F, Kryachko ES (2005) J Chem Phys 122:044304-1–0443041-4CrossRefGoogle Scholar
  24. 24.
    Koskine P, Häkkinen H, Seifert G, Sanna S, Frauenheim T, Moseler M (2006) New J Phys 8:9CrossRefGoogle Scholar
  25. 25.
    Walker AV (2005) J Chem Phys 122:094310-1–094310-12CrossRefGoogle Scholar
  26. 26.
    Xiao L, Tollberg B, Hu X, Wang L (2006) J Chem Phys 124:114309-1–114309-10CrossRefGoogle Scholar
  27. 27.
    Li XB, Wang HY, Yang XD, Zhu ZH, Tang YJ (2007) J Chem Phys 126:084505-1–084505-8Google Scholar
  28. 28.
    Assadollahzadeh B, Schwerdtfeger P (2009) J Chem Phys 131:064306-1–064306-11CrossRefGoogle Scholar
  29. 29.
    Bulusu S, Zeng XC (2006) J Chem Phys 125:154303-1–154303-5CrossRefGoogle Scholar
  30. 30.
    Phala NS, Klatt G, van Steen E (2004) Chem Phys Lett 395:33–37CrossRefGoogle Scholar
  31. 31.
    Olson RM, Varganov S, Gordon MS, Metiu H, Chretien S, Piecuch P, Kowalski K, Kucharski SA, Musial M (2005) J Am Chem Soc 127:1049–1052CrossRefGoogle Scholar
  32. 32.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  33. 33.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  34. 34.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298CrossRefGoogle Scholar
  35. 35.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  36. 36.
    Zanti G, Peeters D (2010) J Phys Chem A 114:10345–10456CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, ReVision C.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  38. 38.
    Olson RM, Varganov S, Gordon MS, Metiu H, Chretien S, Piechuch P, Kowalski K, Kucharski SA, Musial M (2005) J Am Chem Soc 127:1049–1052CrossRefGoogle Scholar
  39. 39.
    Häkkinen H, Yoon B, Landman U, Li X, Zhai H-J, Wang L-S (2003) J Phys Chem A 107:6168CrossRefGoogle Scholar
  40. 40.
    Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073CrossRefGoogle Scholar
  41. 41.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746CrossRefGoogle Scholar
  42. 42.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  43. 43.
    Jules JL, Lombardi JR (2003) J Phys Chem A 107:1268–1273CrossRefGoogle Scholar
  44. 44.
    Berlin T (1951) J Chem Phys 19:208CrossRefGoogle Scholar
  45. 45.
    Zubarev DY, Averkiev BB, Zhai H-J, Wang L-S, Boldyrev AI (2008) Phys Chem Chem Phys 10:257–267CrossRefGoogle Scholar
  46. 46.
    Howard JA, Sutcliffe R, Mile B (1983) J Chem Soc Chem Commun 1449–1450Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Condensed Matter and Nanosciences, Quantum Chemistry GroupUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations