Theoretical Chemistry Accounts

, 131:1297

On the electronic structure of the diazomethane molecule

Regular Article


The electronic structure and chemical bonding in the diazomethane molecule are investigated using full-valence generalized valence bond (GVB) methods. We point out that an ab initio-based bonding model must correspond directly to a wave function that yields at least qualitatively corrects values for the structural parameters of a molecule, that is, molecular geometry, vibrational frequencies, and dipole moment. However, in the case of diazomethane, when trying to emulate the bonding models proposed in the literature through full-valence GVB wave functions, we found out that all of them are directly associated with optimized molecular geometries that are saddle points in the molecular potential energy surface. This spurious behavior is corrected by a multiconfiguration–self-consistent field (MCSCF) wave function that incorporates an enlarged “pi-like” active space enabling a complete active space self-consistent field (CASSCF) block, with more active orbitals than electrons, together with a “sigma-like” generalized valence bond with restricted configuration interaction (GVB-RCI) block. With this wave function, we are able to generate the best calculated set of harmonic frequencies to date for the diazomethane molecule. The physical effects that are important for the correct description of its electronic and vibrational structure are then discussed using a series of MCSCF wave functions. This result leads to a decomposition of the electronic wave function into diabatic GVB-RCI chemical structures along the CH2 wagging mode illustrating the necessity to understand the chemical bonding in this molecule as a superposition of bonding patterns. Some structural properties of diazomethane and diazocompounds are then successfully analyzed using our model.


Diazomethane Chemical bonding Generalized valence bond Vibrational spectra 


  1. 1.
    Huisgen R (1963) Angew Chem Int Ed Eng 2:565CrossRefGoogle Scholar
  2. 2.
    Goddard WA III (1967) Phys Rev 157:81CrossRefGoogle Scholar
  3. 3.
    Goddard WA III, Dunning TH, Hunt WJ, Hay PJ (1972) Acc Chem Res 6:368CrossRefGoogle Scholar
  4. 4.
    Walch SP, Goddard WA III (1975) J Am Chem Soc 97:5319CrossRefGoogle Scholar
  5. 5.
    Cooper DL, Gerratt J, Raimondi M, Wright SC (1987) Chem Phys Lett 138:296CrossRefGoogle Scholar
  6. 6.
    Papakondylis A, Mavridis A (1999) J Phys Chem A 103:1255CrossRefGoogle Scholar
  7. 7.
    Moore CB, Pimentel GC (1964) J Chem Phys 41:3504CrossRefGoogle Scholar
  8. 8.
    Gerratt J (1971) Adv At Mol Phys 7:141CrossRefGoogle Scholar
  9. 9.
    Cooper DL, Gerratt J, Raimondi M (1989) J Chem Soc Perkin Trans 2:1187Google Scholar
  10. 10.
    Malcolm NOJ, McDouall JJW (1994) J Comput Chem 15:1365CrossRefGoogle Scholar
  11. 11.
    Windhorn L, Yeston JS, Witte T, Fuβ W, Motzkus M, Proch D, Kompa KL, Moore CB (2003) J Chem Phys 119:641CrossRefGoogle Scholar
  12. 12.
    Schmidt MW et al (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  13. 13.
    Ivanic J, Ruedenberg K (2001) Theor Chem Acc 106:339CrossRefGoogle Scholar
  14. 14.
    Ivanic J (2003) J Chem Phys 119:9364CrossRefGoogle Scholar
  15. 15.
    Shepard R (1987) Adv Chem Phys 69:63CrossRefGoogle Scholar
  16. 16.
    Carter EA, Goddard WA III (1988) J Chem Phys 88:3132CrossRefGoogle Scholar
  17. 17.
    Faglioni F, Goddard WA III (1999) Int J Quantum Chem 73:1CrossRefGoogle Scholar
  18. 18.
    Cullen J (1999) J Comput Chem 20:999CrossRefGoogle Scholar
  19. 19.
    Barbosa AGH, Barcelos AM (2009) Theor Chem Acc 122:51CrossRefGoogle Scholar
  20. 20.
    Pipek J, Mezey PG (1989) J Chem Phys 90:4916CrossRefGoogle Scholar
  21. 21.
    Carter EA, Goddard WA III (1986) J Am Chem Soc 108:2180CrossRefGoogle Scholar
  22. 22.
    Henriques AM, Barbosa AGH (2011) J Phys Chem A 115:12259CrossRefGoogle Scholar
  23. 23.
    Cox AP, Thomas LF, Sheridan G (1958) Nature (London) 181:1000CrossRefGoogle Scholar
  24. 24.
    Sheridan G (1962) Adv Mol Spectrosc. In: Proceedings of the IVth International Meeting Moleular Spectroscopy 1:139Google Scholar
  25. 25.
    Boldyrev AI, Schleyer PVR, Higgins D, Thomson C, Kramarenko SS (1992) J Comput Chem 13:1066CrossRefGoogle Scholar
  26. 26.
    Habas MP, Dargelos A (1995) Chem Phys 199:177CrossRefGoogle Scholar
  27. 27.
    Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic Press, New YorkGoogle Scholar
  28. 28.
    Thorsteinsson T, Cooper DL (1996) Theor Chim Acta 94:233Google Scholar
  29. 29.
    McLean AD, Lengsfield BH III, Pacansky J, Ellinger Y (1985) J Chem Phys 83:3567CrossRefGoogle Scholar
  30. 30.
    Davidson ER, Borden WT (1983) J Phys Chem 87:4783CrossRefGoogle Scholar
  31. 31.
    Moore CB, Pimentel GC (1964) J Chem Phys 40:329CrossRefGoogle Scholar
  32. 32.
    Khlifi M, Paillous P, Bruston P, Raulin F (1996) Icarus 124:318CrossRefGoogle Scholar
  33. 33.
    Baraille I, Larrieu C, Dargelos A, Chaillet M (2001) Chem Phys 273:91CrossRefGoogle Scholar
  34. 34.
    Pfeiffer F, Guntram R (2011) J Phys Chem A 115:11050CrossRefGoogle Scholar
  35. 35.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  36. 36.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157CrossRefGoogle Scholar
  37. 37.
    Puzzarini C, Gambi A (2012) Theor Chem Acc 131:1135CrossRefGoogle Scholar
  38. 38.
    Monteiro JGS, Barbosa AGH, to be submittedGoogle Scholar
  39. 39.
    Eisfeld W, Morokuma K (2000) J Chem Phys 113:5587CrossRefGoogle Scholar
  40. 40.
    Olsen J, Yeager DL, Jørgensen P (1983) Adv Chem Phys 54:1CrossRefGoogle Scholar
  41. 41.
    Crawford TD, Stanton JF, Allen WD, Schaefer HF (1997) J Chem Phys 107:10626CrossRefGoogle Scholar
  42. 42.
    Kerkines ISK, Čársky P, Mavridis A (2005) J Phys Chem A 109:10148CrossRefGoogle Scholar
  43. 43.
    Bitzer RS, Barbosa AGH, da Silva CO, Nascimento MAC (2005) Carbohydr Res 340:2171CrossRefGoogle Scholar
  44. 44.
    Malmqvist PA (1986) Int J Quantum Chem 30:479CrossRefGoogle Scholar
  45. 45.
    Atchity GJ, Ruedenberg K (1999) J Chem Phys 111:2910CrossRefGoogle Scholar
  46. 46.
    Kyvala M (2009) Int J Quantum Chem 109:1200CrossRefGoogle Scholar
  47. 47.
    Barbosa AGH, Nascimento MAC (2004) Int J Quantum Chem 99:317CrossRefGoogle Scholar
  48. 48.
    Pauling L (1939) The nature of the chemical bond. Cornell University Press, IthacaGoogle Scholar
  49. 49.
    Wu W, Su PF, Shaik S, Hiberty PC (2011) Chem Rev 111:7557CrossRefGoogle Scholar
  50. 50.
    Harcourt RD, Roso W (1978) Can J Chem 56:1093CrossRefGoogle Scholar
  51. 51.
    Truhlar DG (2007) J Chem Educ 84:781CrossRefGoogle Scholar
  52. 52.
    Zielinski M, Havenith RWA, Jenneskens LW, van Lenthe JH (2010) Theor Chem Acc 127:19CrossRefGoogle Scholar
  53. 53.
    Cooper DL, Gerratt J, Raimondi M (1986) Nature 323:699CrossRefGoogle Scholar
  54. 54.
    Fleming FP, Barbosa AGH, Esteves PM (2006) J Phys Chem A 110:11903CrossRefGoogle Scholar
  55. 55.
    Cardozo TM, Nascimento MAC (2009) J Chem Phys 130:104102CrossRefGoogle Scholar
  56. 56.
    Pyper NC, Gerratt J (1977) Proc R Soc Lond A 355:406Google Scholar
  57. 57.
    Voter AF, Goddard WA III (1981) Chem Phys 57:253CrossRefGoogle Scholar
  58. 58.
    Hollauer E, Nascimento MAC (1993) J Chem Phys 99:1207CrossRefGoogle Scholar
  59. 59.
    Penotti FE (1996) Int J Quantum Chem 59:349CrossRefGoogle Scholar
  60. 60.
    Clarke NJ, Raimondi M, Sironi M, Gerratt J, Cooper DL (1998) Theor Chem Acc 99:8CrossRefGoogle Scholar
  61. 61.
    Hiberty PC, Shaik S (2002) Theor Chem Acc 108:255CrossRefGoogle Scholar
  62. 62.
    Blavins JJ, Karadakov PB, Cooper DL (2001) J Org Chem 66:4285CrossRefGoogle Scholar
  63. 63.
    Braïda B, Walter C, Engels B, Hiberty PC (2010) J Am Chem Soc 132:7631CrossRefGoogle Scholar
  64. 64.
    Carter EA, Goddard WA III (1988) J Chem Phys 88:1752CrossRefGoogle Scholar
  65. 65.
    Carter EA, Goddard WA III (1986) J Phys Chem 90:998CrossRefGoogle Scholar
  66. 66.
    Doyle MP, Duffy R, Ratnikov M, Zhou L (2010) Chem Rev 110:704CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • André G. H. Barbosa
    • 1
  • João G. S. Monteiro
    • 1
  1. 1.Instituto de QuímicaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations