Theoretical Chemistry Accounts

, 131:1296 | Cite as

A computational study toward understanding the separation of ions of potassium chloride microcrystal in water

Regular Article

Abstract

The dissolution phenomenon of potassium chloride microcrystal in water has been studied using DFT calculations and molecular dynamics studies. DFT study reveals the departure of Cl to be more pronounced from the edge positions compared to the corner sites of the KCl [(KCl)6(H2O) n , n = 1–15] microcrystal lattice. The dissolution initiates through the movement of a Cl from the edge of the crystal lattice (5.19 Å) at n = 4 water molecules in agreement with the separation of ions from a single KCl molecule. This separation is more evident with the cluster of 6 water molecules (6.12 Å). The characteristics of KCl dissolution dynamics, such as the sequential departure of ions from the crystal, the hydrated ions and the dynamical role of the water molecules, are further studied by classical molecular dynamics simulations employing GROMACS force field. Molecular dynamics calculations are performed with a larger crystal of KCl with {100} plane consisting of 108 K+ and 108 Cl ions. The MD studies have been extended with relatively unstable planes of KCl {110} (consisting of 105 K+ and 105 Cl ions) and {111} (consisting of 120 K+ and 120 Cl ions). The simulations revealed that the dissolution of {110} and {111} planes is relatively faster than that of the stable {100} plane. A mean square displacement analysis also supported this observation. The dissolution of the ions generally occurs from the top layer of {100} surface, while other layers remain intact. However, such a definite pattern of dissolution is not noticed with {110} and {111} planes.

Keywords

Solvation KCl microcrystal DFT Molecular dynamics Mean square displacement 

Notes

Acknowledgments

Authors thank DST, New Delhi, India, for financial support of this work. One of the authors AS is thankful to UGC, New Delhi, India, for awarding senior research fellowship. We thank Prof. Jim Thomas (University of Sheffield, UK) for helping in preparing the manuscript. Authors thank the reviewers for their comments and suggestions that have helped to improve the article.

Supplementary material

214_2012_1296_MOESM1_ESM.doc (4.6 mb)
Supplementary material 1 (DOC 4754 kb)

References

  1. 1.
    Marcus Y (1985) Ion solvation. Wiley-Interscience, New YorkGoogle Scholar
  2. 2.
    Kirk KL (1991) Biochemistry of halogens and inorganic halides. Plenum, New YorkCrossRefGoogle Scholar
  3. 3.
    Desvergne J-P (1997) In: Czarnik AW (ed) Chemisensors of ion and molecular recognition. Kluwer, Dordrecht, p 492CrossRefGoogle Scholar
  4. 4.
    Arshadi M, Yamdangi R, Kebarle P (1970) J Phys Chem 74:1475–1482CrossRefGoogle Scholar
  5. 5.
    Lisy JM (1997) Int Rev Phys Chem 16:267–289CrossRefGoogle Scholar
  6. 6.
    Patwari GN, Lisy JM (2003) J Chem Phys 118:8555–8558CrossRefGoogle Scholar
  7. 7.
    Hammer NI, Shin J-W, Headrick JM, Diken EG, Roscioli JR, Weddle GH, Johnson MA (2004) Science 306:675–679CrossRefGoogle Scholar
  8. 8.
    Katz AK, Gulsker JP, Blebe SA, Bock CW (1996) J Am Chem Soc 118:5752–5763CrossRefGoogle Scholar
  9. 9.
    Glendening ED, Feller D (1995) J Phys Chem 99:3060–3067CrossRefGoogle Scholar
  10. 10.
    Feller D, Glendening ED, Woon DE, Feyereisen MW (1995) J Chem Phys 103:3526–3542CrossRefGoogle Scholar
  11. 11.
    Lee J, Cho SJ, Mhin BJ, Kim KS (1995) J Chem Phys 102:839–851CrossRefGoogle Scholar
  12. 12.
    Lee HM, Kim J, Lee S, Mhin BJ, Kim KS (1999) J Chem Phys 111:3995–4004CrossRefGoogle Scholar
  13. 13.
    Lee HM, Tarakeshwar P, Park J, Kolaski MR, Yoon YJ, Yi H-B, Kim WY, Kim KS (2004) J Phys Chem A 108:2949–2958CrossRefGoogle Scholar
  14. 14.
    Xantheas SS (1995) J Chem Phys 102:4505–4517CrossRefGoogle Scholar
  15. 15.
    Ayotte P, Nielsen SB, Weddle GH, Johnson MA, Xantheas SS (1999) J Phys Chem A 103:10665–10669CrossRefGoogle Scholar
  16. 16.
    Cabarcos OM, Weinheimer CJ, Lisy JM, Xantheas SS (1999) J Chem Phys 110:5–8CrossRefGoogle Scholar
  17. 17.
    Ault BS (1978) J Am Chem Soc 100:2426–2433CrossRefGoogle Scholar
  18. 18.
    Singh NM, Yi HB, Min SK, Park M, Kim KS (2006) J Phys Chem B 110:3808–3815CrossRefGoogle Scholar
  19. 19.
    Jungwirth P (2000) J Phys Chem A 104:145–148CrossRefGoogle Scholar
  20. 20.
    Jungwirth P, Tobias DJ (2002) J Phys Chem B 106:6361–6373CrossRefGoogle Scholar
  21. 21.
    Woon DE Jr, Dunning TH (1995) J Am Chem Soc 117:1090–1097CrossRefGoogle Scholar
  22. 22.
    Yamabe S, Kouno H, Matsumura KJ (2000) Phys Chem B 104:10242–10252CrossRefGoogle Scholar
  23. 23.
    Liu L-M, Laio A, Michaelides A (2011) Phys Chem Chem Phys 13:13162–13166CrossRefGoogle Scholar
  24. 24.
    Asada T, Nishimoto K (1995) Chem Phys Lett 232:518–523CrossRefGoogle Scholar
  25. 25.
    Ohtaki H, Fukushima N (1989) Pure Appl Chem 61:179–185CrossRefGoogle Scholar
  26. 26.
    Yang Y, Meng S, Wang EG (2006) J Phys Condens Matter 18:10165–10177CrossRefGoogle Scholar
  27. 27.
    Du H, Miller JD (2007) J Phys Chem C111:10013–10022Google Scholar
  28. 28.
    Sen A, Ganguly B (2010) J Comput Chem 31:2948–2954Google Scholar
  29. 29.
    Peslherbe GH, Ladanyi BM, Hynes JT (2000) J Phys Chem A 104:4533–4548CrossRefGoogle Scholar
  30. 30.
    Beichert P, Finlayson-Pitts BJ (1996) J Phys Chem 100:15218–15228CrossRefGoogle Scholar
  31. 31.
    DeHaan DO, Finlayson-Pitts BJ (1997) J Phys Chem A 101:9993–9999CrossRefGoogle Scholar
  32. 32.
    Oum KW, Lakin MJ, DeHaan DO, Brauer T, Finlayson-Pitts BJ (1998) Science 279:74–76CrossRefGoogle Scholar
  33. 33.
    Schweitzer F, Magi L, Mirabel P, George C (1998) J Phys Chem A 102:593–600CrossRefGoogle Scholar
  34. 34.
    Reichardt C, Welton T (1985) Solvation and solvent effects in organic chemistry, 4th edn. Wiley-VCH, GermanyGoogle Scholar
  35. 35.
    Makov G, Nitzan A (1992) J Phys Chem 96:2965–2967CrossRefGoogle Scholar
  36. 36.
    Zubov AV, Zubov KV, Zubov VA (2007) Russ J Appl Chem 80:1249–1255CrossRefGoogle Scholar
  37. 37.
    Born M, Stern O (1919) Sitzber Preuss Akad Wiss 48:901Google Scholar
  38. 38.
    Westwood ARC, Hitch TT (1963) J Appl Phys 34:3085–3089CrossRefGoogle Scholar
  39. 39.
    Gilman JJ (1960) J Appl Phys 31:2208–2218CrossRefGoogle Scholar
  40. 40.
    Livey DT, Murray P (1956) J Am Ceram Soc 39:363–372CrossRefGoogle Scholar
  41. 41.
    Bruno M, Aquilano D, Pastero L, Prencipe M (2008) Cryst Growth Des 8:2163–2170CrossRefGoogle Scholar
  42. 42.
    Perdew JP, Wang Y (1986) Phys Rev B 33:8800–8802CrossRefGoogle Scholar
  43. 43.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  44. 44.
    Becke AD (1996) J Chem Phys 104:1040–1047CrossRefGoogle Scholar
  45. 45.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  46. 46.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  47. 47.
    Ziesche P, Kurth S, Perdew JP (1998) Comput Mater Sci 11:122–127CrossRefGoogle Scholar
  48. 48.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974–12980CrossRefGoogle Scholar
  49. 49.
    Wu Z, Cohen RE, Singh DJ (2004) Phys Rev B 70:104112–104118CrossRefGoogle Scholar
  50. 50.
    Materials Studio DMOL3 Version 4.1 Accelrys Inc., San DiegoGoogle Scholar
  51. 51.
    Delley B (1990) J Chem Phys 92:508–517CrossRefGoogle Scholar
  52. 52.
    Delley B (2000) J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  53. 53.
    Delley B (1996) J Phys Chem 100:6107–6110CrossRefGoogle Scholar
  54. 54.
    Lee CT, Wang WT, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  55. 55.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  56. 56.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  57. 57.
    Gaussian 09, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, (2010) Gaussian, Inc., WallingfordGoogle Scholar
  58. 58.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV: constants of diatomic molecules. Van Nostrand-Reinhold, New YorkGoogle Scholar
  59. 59.
    Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317Google Scholar
  60. 60.
    van Gunsteren WF, Billeter S, Eising AA, Hünenberger PH, Krüger P, Mark AE (1996) Biomolecular simulation:the gromos96 manual and user guide Zürich:Vdf Hochschulverlag AG an der ETH ZürichGoogle Scholar
  61. 61.
    Jorgensen W, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  62. 62.
    Abascal JLF, Sanz E, García Fernández R, Vegas C (2005) J Chem Phys 122:234511–234519CrossRefGoogle Scholar
  63. 63.
    Abascal JLF, Vega C (2005) J Chem Phys 123:234505–234516CrossRefGoogle Scholar
  64. 64.
    Singh A, Chakraborty S, Ganguly B (2007) Langmuir 23:5406–5411CrossRefGoogle Scholar
  65. 65.
    Khan MAS, Sen A, Ganguly B (2009) Cryst Eng Comm 11:2660–2667 and references withinGoogle Scholar
  66. 66.
    Singh A, Sen A, Ganguly B (2010) J Mol Graph Model 28:413–419 and references withinGoogle Scholar
  67. 67.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  68. 68.
    Darden T, York D, Pedersen L (1993) Chem Phys 98:10089–10092Google Scholar
  69. 69.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  70. 70.
    Straatsma TP, Berendsen HJC (1988) J Chem Phys 89:5876–5888CrossRefGoogle Scholar
  71. 71.
    Gurtovenko AA, Vattulainen I (2008) J Phys Chem B 112:1953–1962CrossRefGoogle Scholar
  72. 72.
    Dennis CG, Marimuthu K, David RN, Jeremy CS (2010) J Chem Theor Comp 6:1390–1400CrossRefGoogle Scholar
  73. 73.
    Dimitrios A, David RC, Alberto S (2009) J Phys Chem 113:19591–19600Google Scholar
  74. 74.
    Servaas M, Titus S van E, Carsten K, Arnout C, Bert L de G (2012) J Phys Chem B. doi: 10.1021/jp209964a
  75. 75.
    Lide DR (1998) Handbook of chemistry and physics, section 9, 79th edn. CRC Press, Boca Raton, p 23Google Scholar
  76. 76.
    Džidić I, Kebarle P (1970) J Phys Chem 74:1466–1474CrossRefGoogle Scholar
  77. 77.
    Yamabe S, Furumiya Y, Hiraoka K, Morise K (1986) Chem Phys Lett 131:261–266CrossRefGoogle Scholar
  78. 78.
    Langer S, Pemberton RS, Finlayson-Pitts BJ (1997) J Phys Chem A 101:1277–1286CrossRefGoogle Scholar
  79. 79.
    Cooker H (1976) J Phys Chem 80:2078–2084CrossRefGoogle Scholar
  80. 80.
    Mullin JW (1993) Crystallization, 3rd edn. Butterworth, London, p 238Google Scholar
  81. 81.
    Beinfait M, Boistelle R, Kern R (1965) In: Kern R (ed) Adsorbtion er Croissance Cristalline. Centre National de la Recherche Scientifique, Paris, p 152Google Scholar
  82. 82.
    Green M (1971) Surf Sci 26:549–556CrossRefGoogle Scholar
  83. 83.
    Klug DL (1993) In: Myerson AS (ed) Handbook of industrial crystallization. Butterworth, Montvale, p 65Google Scholar
  84. 84.
    Boistelle R, Simon B (1974) J Cryst Growth 26:140–146CrossRefGoogle Scholar
  85. 85.
    Shinto H, Sakakibara T, Higashitani K (1998) J Phys Chem B 102:1974–1981CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Analytical Discipline and Centralized Instrument FacilityCentral Salt and Marine Chemicals Research Institute (Council of Scientific Industrial Research)BhavnagarIndia

Personalised recommendations