Theoretical Chemistry Accounts

, 131:1295 | Cite as

Singlet oxygen generation versus O–O homolysis in phenyl-substituted anthracene endoperoxides investigated by RASPT2, CASPT2, CC2, and TD-DFT methods

  • Stephan Kupfer
  • Guillermo Pérez-Hernández
  • Leticia González
Regular Article


The electronic excited states corresponding to singlet oxygen generation versus O–O splitting in o-fluorine-phenyl-9-anthracene-9,10-endoperoxide 1 and its 9,10-bisarylanthracene analog 2 have been investigated using theoretical methods. In the case of the smaller endoperoxide 1, the recently developed second-order perturbation theory restricted active space (RASPT2) method has been employed and the results are compared to those from the complete active space (CASPT2), second-order approximated coupled cluster (CC2), and time-dependent density functional theory (TD-DFT) approaches. In addition to the vertical excited states, the photochemical path leading to homolytic O–O dissociation has been computed. This process is governed by a point, where four singlet and four triplet states are almost degenerate and show substantial spin-orbit coupling. The results obtained with RASPT2 indicate that the S 1 state is of π oo * σ oo * character, corresponding to the O–O homolytic dissociation, while higher excited states S n (n ≥ 2) correspond to local and charge transfer excitations and should be correlated to the generation of singlet molecular oxygen. A similar photochemical picture is obtained with CASPT2, although two different active spaces are required to describe different parts of the spectrum. The calculations carried out with CC2 as well as the functionals CAM-B3LYP and the B3LYP(32) containing 32 % of exact exchange show good agreement with the RASPT2 energies, but present a strong mixing of π oo * σ oo * and π oo * π an * excitations in the lowest S 1 state, contradicting the assignment of RASPT2/CASPT2. The use of BP86 is strongly discouraged since it misplaces a large number of charge transfer states below the π oo * σ oo * state. The excited states of 2, calculated with B3LYP(32) are very similar to those of 1, leading to the conclusion that both endoperoxides should show a similar photochemistry, that is, the O–O cleavage seems to be partially quenched and singlet oxygen generation is enhanced, in comparison with the parent compound, anthracene-9,10-endoperoxide.

Graphical abstract

The different electronic excited states of o-fluorine-phenyl-9-anthracene-9,10-endoperoxide have been benchmarked with RASPT2. The lowest excited state corresponds to the homolytic O–O dissociation and higher excited states are connected to singlet oxygen generation.


Ab initio calculations DFT Endoperoxides Multiconfigurational methods Singlet oxygen 



This work is supported by the Deutsche Forschungsgemeinschaft (GO 1059/6-1). All the calculations have been performed at the Universitätsrechenzentrum of the Friedrich-Schiller University of Jena and at the HP computers of the Theoretical Chemistry group at the University of Vienna.

Supplementary material

214_2012_1295_MOESM1_ESM.pdf (2.3 mb)
PDF (2309 KB)


  1. 1.
    DeRosa MC, Crutchley RJ (2002) Coord Chem Rev 233/234:351–357CrossRefGoogle Scholar
  2. 2.
    Aubry JM, Pierlot C, Rigaudy J, Schmidt R (2003) Acc Chem Res 36:668–675CrossRefGoogle Scholar
  3. 3.
    Choea E, Min DB (2006) Crit Rev Food Sci Nutr 46:1–22CrossRefGoogle Scholar
  4. 4.
    Henderson BW, Dougherty T (1992) Photochem Photobiol 55:145–157CrossRefGoogle Scholar
  5. 5.
    Foote CS (1984) Mechanisms of photooxidation. In: Doiron DG, Gomer CJ (eds) Porphyrin localization and treatment of tumors. Alan R. Liss, Inc, pp 3–18Google Scholar
  6. 6.
    Schmidt R, Schaffner K, Trost W, Brauer HD (1984) J Am Chem Soc 88:956–958Google Scholar
  7. 7.
    Blumenstock T, Comes FJ, Schmidt R, Brauer HD (1986) Chem Phy Lett 127:452–455CrossRefGoogle Scholar
  8. 8.
    Jesse J, Comes FJ, Schmidt R, Brauer HD (1989) Chem Phy Lett 160:8–12CrossRefGoogle Scholar
  9. 9.
    Jesse J, Markert R, Comes FJ, Schmidt R, Brauer HD (1990) Chem Phy Lett 166:95–100CrossRefGoogle Scholar
  10. 10.
    Brauer HD, Schmidt R (2000) J Phys Chem A 104:164–165CrossRefGoogle Scholar
  11. 11.
    Schmidt R (2012) Photochem Photobiol 11:1004–1009CrossRefGoogle Scholar
  12. 12.
    Eisenthal KB, Turro NJ, Dupuy CG, Hrovat DA, Langan J, Jenny TA, Sitzmann EV (1986) J Phys Chem 90:5168–5173CrossRefGoogle Scholar
  13. 13.
    Klein A, Gudipati MS (1999) J Phys Chem A 103:3843–3853CrossRefGoogle Scholar
  14. 14.
    Corral I, González L, Lauer A, Freyer W, Fidder H, Heyne K (2008) Chem Phys Lett 452:67–71CrossRefGoogle Scholar
  15. 15.
    Gudipati MS, Klein A (2000) J Phys Chem A 104:166–167CrossRefGoogle Scholar
  16. 16.
    Kearns RD (1969) J Am Chem Soc 91:6554–6563CrossRefGoogle Scholar
  17. 17.
    Kearns RD, Khan AU (1969) Photochem Photobiol 10:193–210 /Khan69Google Scholar
  18. 18.
    Corral I, González L (2008) J Comput Chem 29:1982–1991CrossRefGoogle Scholar
  19. 19.
    Corral I, González L (2007) Chem Phys Lett 446:262–267CrossRefGoogle Scholar
  20. 20.
    Martínez-Fernández L, González L, Corral I (2011) Comput Theoret Chem 975:13–19CrossRefGoogle Scholar
  21. 21.
    Donkers RL, Workentin MS (2004) J Am Chem Soc 126:1688–1698CrossRefGoogle Scholar
  22. 22.
    Fidder H, Lauer A, Freyer W, Koeppe B, Heyne K (2009) J Phys Chem A 104:6289–6296CrossRefGoogle Scholar
  23. 23.
    Rigaudy J, Breliere C, Scribe P (1978) Tetrahedron Lett 7:687–690CrossRefGoogle Scholar
  24. 24.
    Ernsting NP, Schmidt R, Brauer H (1990) J Phys Chem 94:5252–5255CrossRefGoogle Scholar
  25. 25.
    Mollenhauer D, Corral I, González L (2010) J Phys Chem Lett 1:1036–1040CrossRefGoogle Scholar
  26. 26.
    Corral I, González L (2010) Chem Phys Lett 499:21–25CrossRefGoogle Scholar
  27. 27.
    Assmann M, Worth GA, González L (2012) J Chem Phys 137:22A524-1–22A524-12Google Scholar
  28. 28.
    Lauer A, Dobryakov AL, Kovalenko SA, Fidder H, Heyne K (2011) . Phys Chem Chem Phys 13:8723–8732CrossRefGoogle Scholar
  29. 29.
    Zehm D, Fudicker W, Linker T (2007) Angew Chem Int Ed 46:7689–7692Google Scholar
  30. 30.
    González L, Escudero D, Serrano-Andrés L (2012) Chem Phys Chem 13:28–51CrossRefGoogle Scholar
  31. 31.
    Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126:4007–4016CrossRefGoogle Scholar
  32. 32.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  33. 33.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  34. 34.
    Christiansen O, Koch H, Jørgensen P (1995) Chem Phys Lett 243:409–418CrossRefGoogle Scholar
  35. 35.
    Malmqvist PÅ, Rendell A, Roos BO (1990) J Phys Chem 94:5477–5482CrossRefGoogle Scholar
  36. 36.
    Olsen J, Roos BO, Jørgensen P, Jensen HJA (1988) J Chem Phys 89:2185–2192CrossRefGoogle Scholar
  37. 37.
    Malmqvist PÅ, Pierloot K, Shahi ARM, Cramer CJ, Gagliardi L (2008) J Chem Phys 128:204109-1–204109-10Google Scholar
  38. 38.
    Manni GL, Aquilante F, Gagliardi L (2011) J Chem Phys 134:034114–034118CrossRefGoogle Scholar
  39. 39.
    Sauri V, Serrano-Andrs L, Shahi ARM, Gagliardi L, Vancoillie S, Pierloot K (2011) J Chem Theory Comput 7:153–168CrossRefGoogle Scholar
  40. 40.
    Escudero D, González L (2012) J Chem Theory Comput 8:203–213CrossRefGoogle Scholar
  41. 41.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  42. 42.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, J Bloino GZ, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, CossiM, Rega N,MillamJM, KleneM, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, O Yazyev AJA, R Cammi CP, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CTGoogle Scholar
  44. 44.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  45. 45.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  46. 46.
    Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359–363CrossRefGoogle Scholar
  47. 47.
    T H Dunning J (1971) J Chem Phys 55:716–723Google Scholar
  48. 48.
    Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165–169CrossRefGoogle Scholar
  49. 49.
    Roos BO (1987) In Ab initio methods in quantum chemistry II. Wiley-VCH, ChinesterGoogle Scholar
  50. 50.
    Finley J, Malmqvist PÅ, Roos BO, Serrano-Andrés L (1998) Chem Phys Lett 288:299–306CrossRefGoogle Scholar
  51. 51.
    Aquilante F, Vico LD, Ferré N, Ghigo G, Malmqvist P, Neogrády P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224–247CrossRefGoogle Scholar
  52. 52.
    Veryazov V, Widmark PO, Serrano-Andrés L, Lindh R, Roos BO (2004). Int J Quantum Chem 100:626–635CrossRefGoogle Scholar
  53. 53.
    Karlström G, Lindh R, Malmqvist PÅ, Roos BO (2003) . Comput Mater Sci 28:222–239CrossRefGoogle Scholar
  54. 54.
    Andersson K, Aquilante F, Bernhardsson A, Blomberg MRA, Cooper DL, Cossi M, Devarajan A, L De Vico NF, Fülscher MP, Gaenko A, Gagliardi L, Ghigo G, de Graaf C, Hess BA, Hagberg D, Holt A, Karlström G, Krogh JW, Lindh R, Malmqvist PÅ, Neogrády P, Olsen J, Pedersen TB, Pitonak M, Raab J, Reiher M, Roos BO, Ryde U, Schapiro I, Schimmelpfennig B, Seijo L, Serrano-Andrés L, Siegbahn PEM, Stålring J, Thorsteinsson T, Vancoillie S, Veryazov V, Widmark PO, Wolf A (2011) MOLCAS, Release 7.6, Department of Theoretical Chemistry, Lund UniversityGoogle Scholar
  55. 55.
    Pierloot K, Dumez B, Widmark PO, Roos BO (1995) Theor Chim Acta 90:87–114Google Scholar
  56. 56.
    Aquilante F, Malmqvist P, Pedersen TB, Ghosh A, Roos BO (2008). J Chem Theory Comput 4:694–702CrossRefGoogle Scholar
  57. 57.
    Anderson K, Roos BO (1995) Chem Phys Lett 245:215–223CrossRefGoogle Scholar
  58. 58.
    Malmqvist P, Roos BO (1989) Chem Phys Lett 155:189–194CrossRefGoogle Scholar
  59. 59.
    Malmqvist P, Roos BO, Schimmelpfennig B (2002) Chem Phys Lett 357:230–240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stephan Kupfer
    • 1
  • Guillermo Pérez-Hernández
    • 1
    • 2
  • Leticia González
    • 3
  1. 1.Institut für Physikalische ChemieFriedrich-Schiller Universität JenaJenaGermany
  2. 2.Institut für MathematikFreie Universität BerlinBerlinGermany
  3. 3.Institute of Theoretical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations