Theoretical Chemistry Accounts

, 131:1294 | Cite as

A DFT and Natural Resonance Theory investigation of the electronic structure of mesoionic compounds

  • Italo C. Anjos
  • Mário L. A. A. Vasconcellos
  • Gerd B. Rocha
Regular Article

Abstract

Mesoionic compounds are a class of heterocyclic molecules which have an unusual electronic structure. Although there are reports about their synthetic, optical and biological applications, some of their properties are not fully understood. In this work, an electronic structure investigation of three different mesoionic rings was made by means of DFT, Natural Bond Orbitals and Natural Resonance Theory calculations; we varied the substituents at three positions, totalizing 54 structures. Our results showed that C2–X bond is the longest endocyclic bond and the most susceptible to undergo cleavage. In addition, 1,3-oxazol-5-one (NOO) rings are more likely to open than 1,3-diazole-4-thione (NNCS) and 1,3-thiazole-5-thione (NSS) ones. Natural resonance analysis provided us a better understanding of the important canonical forms for those compounds which could be a good starting point for higher-level multi-reference calculations. We also found out that substituent groups may affect the electronic structure of those compounds as much as the ring structure itself.

Keywords

Mesoionic compounds DFT Frontier orbitals NBO analysis Natural Resonance Theory 

Notes

Acknowledgments

We thank CNPq, CAPES (Brazilian agencies) and INCT-INAMI for the financial support.

Supplementary material

214_2012_1294_MOESM1_ESM.pdf (5.1 mb)
Supplementary material 1 (PDF 5178 kb)

References

  1. 1.
    Schonberg A (1938) J Chem Soc 824. doi: 10.1039/JR9380000824
  2. 2.
    Ollis W, Ramsden CA (1976) Adv Heterocycl Chem 19:1CrossRefGoogle Scholar
  3. 3.
    Langhals H (2003) Angew Chem Int Ed 42:4286CrossRefGoogle Scholar
  4. 4.
    Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC (2005) Acc Chem Res 38:460CrossRefGoogle Scholar
  5. 5.
    Cantillo D, Avalos M, Babiano R, Cintas P, Jiménez JL, Light ME, Palacios JC (2008) Org Lett 10:1079CrossRefGoogle Scholar
  6. 6.
    Arévalo MJ, Ávalos M, Babiano R, Cintas P, Jiménez JL, Light ME, Palacios JC (2006) Tetrahedron 62:6909CrossRefGoogle Scholar
  7. 7.
    Fonseca TL, de Oliveira HCB, Castro MA (2008) Chem Phys Lett 457:119CrossRefGoogle Scholar
  8. 8.
    Lyra BF, Morais S, Rocha GB, Miller J, Moura GLC, Simas AM, Peppe C, Athayde-Filho PF (2010) J Braz Chem Soc 21:934CrossRefGoogle Scholar
  9. 9.
    Fabian J, Hess BA (2002) Int J Quantum Chem 90:1055CrossRefGoogle Scholar
  10. 10.
    Baker W, Ollis WD (1957) Quart Rev Chem Soc 11:15CrossRefGoogle Scholar
  11. 11.
    Oliveira MB, Miller J, Pereira AB, Galembeck SE, Moura GLC, Simas AM (1996) Phosphorus Sulfur Silicon Relat Elem 108:75CrossRefGoogle Scholar
  12. 12.
    Simas AM, Miller J, Athayade Filho PF (1998) Can J Chem 76:869CrossRefGoogle Scholar
  13. 13.
    Athayde-Filho PF, Miller J, Simas AM (1997) Chimia 51:453Google Scholar
  14. 14.
    Jaźwiński J, Staszewska-Krajewska O (2002) J Mol Struct 602:269CrossRefGoogle Scholar
  15. 15.
    Jaźwiński J, Kamieński B, Staszewska-Krajewska O, Webb G (2003) J Mol Struct 646:1CrossRefGoogle Scholar
  16. 16.
    Earl JC, Mackney AW (1935) J Chem Soc 899. doi: 10.1039/JR9350000899
  17. 17.
    Browne DL, Harrity JPA (2010) Tetrahedron 66:553CrossRefGoogle Scholar
  18. 18.
    Baker W, Ollis WD, Poole VD (1949) J Chem Soc 307. doi: 10.1039/JR9490000307
  19. 19.
    Padwa A, Burgess EM, Gingrich HL, Roush DM (1982) J Org Chem 47:786CrossRefGoogle Scholar
  20. 20.
    Pellissier H (2007) Tetrahedron 63:3235CrossRefGoogle Scholar
  21. 21.
    Potts KT, Choudhury DR, Elliott AJ, Singh UP (1976) J Org Chem 41:1724CrossRefGoogle Scholar
  22. 22.
    Moore DR, Mathias LJ (1987) J Org Chem 52:1599CrossRefGoogle Scholar
  23. 23.
    Senff-Ribeiro A, Echevarria A, Silva EF, Franco CRC, Veiga SS, Oliveira MBM (2004) Br J Cancer 91:297Google Scholar
  24. 24.
    Ferreira WS, Freire-de-Lima L, Saraiva VB, Alisson-Silva F, Mendonça-Previato L, Previato JO, Echevarria A, Lima MEF (2008) Bioorg Med Chem 16:2984CrossRefGoogle Scholar
  25. 25.
    Silva EF, Canto-Cavalheiro MM, Braz VR, Cysne-Finkelstein L, Leon LL, Echevarria A (2002) Eur J Med Chem 37:979CrossRefGoogle Scholar
  26. 26.
    Rodrigues RF, Silva EF, Echevarria A, Fajardo-Bonin R, Amaral VF, Leon LL, Canto-Cavalheiro MM (2007) Eur J Med Chem 42:1039CrossRefGoogle Scholar
  27. 27.
    Moura GLC, Simas AM, Miller J (1996) Chem Phys Lett 257:639CrossRefGoogle Scholar
  28. 28.
    Bezerra A, Gomes AS, Athayde-Filho P, Rocha G, Miller J, Simas A (1990) Chem Phys Lett 309:421CrossRefGoogle Scholar
  29. 29.
    Rakov N, Araújo CB, Rocha G, Simas A, Athayde-Filho PAF, Miller J (2000) Chem Phys Lett 332:13CrossRefGoogle Scholar
  30. 30.
    Shettigar S, Umesh G, Chandrasekharan K, Kalluraya B (2007) Synth Met 157:142CrossRefGoogle Scholar
  31. 31.
    Pilla V, Araújo CB, Lira BF, Simas AM, Miller J, Athayde-Filho PF (2006) Opt Commun 264:225CrossRefGoogle Scholar
  32. 32.
    Wiench JW, Stefaniak L, Tabaszewska A, Webb GA (1997) Electron J Theor Chem 2:71CrossRefGoogle Scholar
  33. 33.
    Fabian JD (2010) Dyes Pigments 84:36CrossRefGoogle Scholar
  34. 34.
    Zhao Y, Truhlar DG (2007) Theor Chem Acc 120:215CrossRefGoogle Scholar
  35. 35.
    Frisch MJ et al (2009) Gaussian 09, revision A.1. Gaussian, Inc., WallingfordGoogle Scholar
  36. 36.
    Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee MissionGoogle Scholar
  37. 37.
    Weinhold F, Landis CR (2001) Chem Educ Res Pract Eur 2:91CrossRefGoogle Scholar
  38. 38.
    Glendening ED, Landis CR, Weinhold F (2012) WIREs Comput Mol Sci 2:1CrossRefGoogle Scholar
  39. 39.
    Glendening ED, Weinhold F (1998) J Comput Chem 19:593CrossRefGoogle Scholar
  40. 40.
    Glendening ED, Weinhold F (1998) J Comput Chem 19:610CrossRefGoogle Scholar
  41. 41.
    Glendening ED, Badenhoop JK, Weinhold F (1998) J Comput Chem 19:628CrossRefGoogle Scholar
  42. 42.
    Graner G, Hirota E, Iijima T, Kuchitsu K, Ramsay DA, Vogt J, Vogt N (2001) Landolt–Börnstein—Group II Molecules and Radicals. doi: 10.1007/10688787_803
  43. 43.
    Jaźiwińsk J, Staszewska O, Staszewski P, Stefaniak L, Wiench JW, Webb GA (1999) J Mol Struct 475:181CrossRefGoogle Scholar
  44. 44.
    NIST Computational Chemistry Comparison and Benchmark Database (2012) http://cccbdb.nist.gov/ Accessed 17 May 2012
  45. 45.
    Inamoto N, Masuda S (1982) Chem Lett 11:1003CrossRefGoogle Scholar
  46. 46.
    Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383CrossRefGoogle Scholar
  47. 47.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Italo C. Anjos
    • 1
  • Mário L. A. A. Vasconcellos
    • 1
  • Gerd B. Rocha
    • 1
  1. 1.Departamento de Química, Centro de Ciências Exatas e da NaturezaUniversidade Federal da ParaíbaJoão PessoaBrasil

Personalised recommendations