Theoretical Chemistry Accounts

, 131:1292 | Cite as

All-electron scalar relativistic basis sets for the 6p elements

Regular Article

Abstract

New segmented all-electron relativistically contracted (SARC) basis sets have been developed for the elements 81Tl–86Rn, thus extending the SARC family of all-electron basis sets to include the 6p block. The SARC basis sets are separately contracted for the second-order Douglas–Kroll–Hess and the zeroth-order regular approximation scalar relativistic Hamiltonians. Their compact size and segmented construction are best suited to the requirements of routine density functional theory (DFT) applications. Evaluation of the basis sets is performed in terms of incompleteness and contraction errors, orbital properties, ionization energies, electron affinities, and atomic polarizabilities. From these atomic metrics and from computed basis set superposition errors for a series of homonuclear dimers, it is shown that the SARC basis sets achieve a good balance between accuracy and size for efficient all-electron scalar relativistic DFT applications.

Keywords

All-electron basis sets Scalar relativistic calculations DKH ZORA SARC 

Notes

Acknowledgments

We gratefully acknowledge financial support from the Max Planck Society.

Supplementary material

214_2012_1292_MOESM1_ESM.txt (41 kb)
Supplementary material 1 (TXT 41 kb)

References

  1. 1.
    Douglas M, Kroll NM (1974) Ann Phys 82:89–155CrossRefGoogle Scholar
  2. 2.
    Hess BA (1985) Phys Rev A 32:756–763CrossRefGoogle Scholar
  3. 3.
    Hess BA (1986) Phys Rev A 33:3742–3748CrossRefGoogle Scholar
  4. 4.
    Jansen G, Hess BA (1989) Phys Rev A 39:6016–6017CrossRefGoogle Scholar
  5. 5.
    Wolf A, Reiher M, Hess BA (2002) J Chem Phys 117:9215–9226CrossRefGoogle Scholar
  6. 6.
    van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792CrossRefGoogle Scholar
  7. 7.
    van Lenthe E, Snijders JG, Baerends EJ (1996) J Chem Phys 105:6505–6516CrossRefGoogle Scholar
  8. 8.
    van Wüllen C (1998) J Chem Phys 109:392–399CrossRefGoogle Scholar
  9. 9.
    Cundari TR, Benson MT, Lutz ML, Sommerer SO (1996) Effective Core potential approaches to the chemistry of the heavier elements. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley, New York, pp 145–202Google Scholar
  10. 10.
    Dolg M (2000) Effective core potentials. In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry, vol 3, 2nd edn. John von Neumann Institute for Computing, Jülich, pp 507–540Google Scholar
  11. 11.
    Neese F (2009) Coord Chem Rev 253:526–563CrossRefGoogle Scholar
  12. 12.
    Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, OxfordGoogle Scholar
  13. 13.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  14. 14.
    Vyboishchikov SF, Sierraalta A, Frenking G (1997) J Comput Chem 18:416–429CrossRefGoogle Scholar
  15. 15.
    Güell M, Luis JM, Solà M, Swart M (2008) J Phys Chem A 112:6384–6391CrossRefGoogle Scholar
  16. 16.
    Pantazis DA, Chen XY, Landis CR, Neese F (2008) J Chem Theory Comput 4:908–919CrossRefGoogle Scholar
  17. 17.
    Pantazis DA, Neese F (2009) J Chem Theory Comput 5:2229–2238CrossRefGoogle Scholar
  18. 18.
    Pantazis DA, Neese F (2011) J Chem Theory Comput 7:677–684CrossRefGoogle Scholar
  19. 19.
    Dyall KG (2006) Theor Chem Acc 115:441–447CrossRefGoogle Scholar
  20. 20.
    Dyall KG (2002) Theor Chem Acc 108:335–340CrossRefGoogle Scholar
  21. 21.
    Dyall KG (1998) Theor Chem Acc 99:366–371Google Scholar
  22. 22.
    Dyall KG (2002) Theor Chem Acc 108:365CrossRefGoogle Scholar
  23. 23.
    Faegri K Jr (2001) Theor Chem Acc 105:252–258CrossRefGoogle Scholar
  24. 24.
    Faegri K (2005) Chem Phys 311:25–34CrossRefGoogle Scholar
  25. 25.
    Koga T, Tatewaki H, Matsuoka O (2003) J Chem Phys 119:1279–1280CrossRefGoogle Scholar
  26. 26.
    Tatewaki H, Watanabe Y (2004) J Chem Phys 121:4528–4533CrossRefGoogle Scholar
  27. 27.
    Yamamoto S, Tatewaki H, Watanabe Y (2006) J Chem Phys 125:054106CrossRefGoogle Scholar
  28. 28.
    Haiduke RLA, Da Silva ABF (2006) J Comput Chem 27:1970–1979CrossRefGoogle Scholar
  29. 29.
    Roos BO, Lindh R, Malmqvist P-Å, Veryazov V, Widmark P-O (2004) J Phys Chem A 108:2851–2858CrossRefGoogle Scholar
  30. 30.
    Koga T, Tatewaki H, Shimazaki T (2000) Chem Phys Lett 328:473–482CrossRefGoogle Scholar
  31. 31.
    Noro T, Sekiya M, Osanai Y, Miyoshi E, Koga T (2003) J Chem Phys 119:5142–5148CrossRefGoogle Scholar
  32. 32.
    Laikov DN (2005) Chem Phys Lett 416:116–120CrossRefGoogle Scholar
  33. 33.
    Laikov DN, Ustynyuk YA (2005) Russ Chem Bull 54:820–826CrossRefGoogle Scholar
  34. 34.
    Dyall KG (1994) J Chem Phys 100:2118–2127CrossRefGoogle Scholar
  35. 35.
    Neese F (2012) WIREs Comput Mol Sci 2:73–78CrossRefGoogle Scholar
  36. 36.
    Stavrev KK, Zerner MC (1997) Int J Quantum Chem 65:877–884CrossRefGoogle Scholar
  37. 37.
    Zerner MC (1989) Int J Quantum Chem 35:567–575CrossRefGoogle Scholar
  38. 38.
    Jorge FE, de Castro EVR, da Silva ABF (1997) J Comput Chem 18:1565–1569CrossRefGoogle Scholar
  39. 39.
    de Castro EVR, Jorge FE (1998) J Chem Phys 108:5225–5229CrossRefGoogle Scholar
  40. 40.
    Nakajima T, Hirao K (2002) J Chem Phys 116:8270–8275CrossRefGoogle Scholar
  41. 41.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  42. 42.
    Bühl M, Reimann C, Pantazis DA, Bredow T, Neese F (2008) J Chem Theory Comput 4:1449–1459CrossRefGoogle Scholar
  43. 43.
    Dolg M (2011) J Chem Theory Comput 7:3131–3142CrossRefGoogle Scholar
  44. 44.
    Malmqvist P-Å, Roos BO, Schimmelpfennig B (2002) Chem Phys Lett 357:230–240CrossRefGoogle Scholar
  45. 45.
    Runeberg N, Pyykkö P (1998) Int J Quantum Chem 66:131–140CrossRefGoogle Scholar
  46. 46.
    Nakajima T, Hirao K (2001) Chem Lett 30:766–767CrossRefGoogle Scholar
  47. 47.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  48. 48.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  49. 49.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  50. 50.
    Visscher L, Dyall KG (1997) Atom Data Nucl Data Tabl 67:207–224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max Planck Institute for Chemical Energy ConversionMülheim an der RuhrGermany

Personalised recommendations