Theoretical Chemistry Accounts

, 131:1289 | Cite as

Time-dependent density functional theory study of charge transfer in collisions

  • Guillermo Avendaño-Franco
  • Bernard Piraux
  • Myrta Grüning
  • Xavier Gonze
Regular Article
Part of the following topical collections:
  1. Theoretical and Computational Chemistry in Belgium Collection


We study the charge transfer between colliding ions, atoms, or molecules, within time-dependent density functional theory. Two particular cases are presented, the collision between a proton and a Helium atom, and between a gold atom and a butane molecule. In the first case, proton kinetic energies between 16 keV and 1.2 MeV are considered, with impact parameters between 0.31 and 1.9 Å. The partial transfer of charge is monitored with time. The total cross-section is obtained as a function of the proton kinetic energy. In the second case, we analyze one trajectory and discuss spin-dependent charge transfer between the different fragments.


Time-dependent density functional theory Charge transfer Collisions 



We acknowledge many discussions with A. Delcorte and O. Restrepo related with secondary ion mass spectrometry, and with Y. Popov concerning the proton–Helium collision. This work was supported by the Communauté française de Belgique, through the Action de Recherche Concertée 07/12-003 “Nanosystèmes hybrides metal-organiques”, and by the FRS-FNRS Belgium (FRFC Grant 2.4.589.09.F).


  1. 1.
    Parr RG, Yang W (1994) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, LondonCrossRefGoogle Scholar
  3. 3.
    Matta CF (2010) How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules. J Comp Chem 31:1297. doi: 10.1002/jcc.21417 Google Scholar
  4. 4.
    Yabana K, Tazawa T, Abe Y, Bo zek P (1998) Time-dependent mean-field description for multiple electron transfer in slow ion-cluster collisions. Phys Rev A 57:R3165. doi: 10.1103/PhysRevA.57.R3165 CrossRefGoogle Scholar
  5. 5.
    Kirchner T, Horbatsch M, Lüdde HJ (2002) Time-dependent independent-particle model calculation of multiple capture and ionization processes in \(p-\hbox{Ar},\overline{p}-\hbox{Ar},\) and He2+ − Ar collisions. Phys Rev A 66:052719. doi: 10.1103/PhysRevA.66.052719 CrossRefGoogle Scholar
  6. 6.
    Vanroose W, Martin F, Rescigno TN, McCurdy CW (2005) Complete photo-induced breakup of H2 molecule as a probe of molecular electron correlation. Science 310:1787. doi: 10.1126/science.1120263 CrossRefGoogle Scholar
  7. 7.
    Saalmann U, Schmidt R (1996) Non-adiabatic quantum molecular dynamics: basic formalism and case study Z. fr. Phys D 38:153. doi: 10.1007/s004600050077 CrossRefGoogle Scholar
  8. 8.
    Kulander KC, Devi KR, Sandhya , Koonin SE (1982) Time-dependent Hartree-Fock theory of charge exchange: Application to He2+ + He. Phys Rev A 25:2968. doi: 10.1103/PhysRevA.25.2968
  9. 9.
    Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061. doi: 10.1063/1.459170 Google Scholar
  10. 10.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997. doi: 10.1103/PhysRevLett.52.997 CrossRefGoogle Scholar
  11. 11.
    Keim M, Achenbach A, Lüdde HJ, Kirchner T (2005) Time-dependent density functional theory calculations for collisions of bare ions with helium. Nucl Instrum Meth B 233:240. doi: 10.1016/j.nimb.2005.03.114 CrossRefGoogle Scholar
  12. 12.
    Rudd ME, DuBois RD, Toburen LH, Ratcliffe CA, Goffe TV (1983) Cross sections for ionization of gases by 5-4000-keV protons and for electron capture by 5-150-keV protons. Phys Rev A 28:3244. doi: 10.1103/PhysRevA.28.3244 CrossRefGoogle Scholar
  13. 13.
    Rudd ME, Kim YK, Madison DH, Gallagher JW (1985) Electron production in proton collisions: total cross sections. Rev Mod Phys 57:965. doi: 10.1103/RevModPhys.57.965 CrossRefGoogle Scholar
  14. 14.
    Wang F, Xu XC, Hong XH, Wang J, Gou BC (2011) A theoretical model for electron transfer in ion-atom collisions: calculations for the collision of a proton with an argon atom. Phys Lett A 375:3290. doi: 10.1016/j.physleta.2011.07.032 CrossRefGoogle Scholar
  15. 15.
    Wang F, Hong XH, Wang J, Gou BC, Wang JG (2012) Comparison of three methods for calculation of electron transfer probability in H+ + Ne . Phys Lett A 376:469. doi: 10.1016/j.physleta.2011.11.031 CrossRefGoogle Scholar
  16. 16.
    Isborn CM, Li X, Tully JC (2007) Time-dependent density functional theory Ehrenfest dynamics: collisions between atomic oxygen and graphite clusters. J Chem Phys 126:134307. doi: 10.1063/1.2713391 CrossRefGoogle Scholar
  17. 17.
    Pruneda JM, Sánchez-Portal D, Arnau A, Juaristi JI , Artacho E (2007) Electronic stopping power in LiF from first principles. Phys Rev Lett 99:235501. doi: 10.1103/PhysRevLett.99.235501 CrossRefGoogle Scholar
  18. 18.
    Pruneda JM, Sánchez-Portal D, Arnau A, Juaristi JI, Artacho E (2009) Heating electrons with ion irradiation: a first-principles approach. Nucl Instrum Meth B 267:590. doi: 10.1016/j.nimb.2008.11.012 CrossRefGoogle Scholar
  19. 19.
    Delcorte A, Bour J, Aubriet F, Muller JF, Bertrand P (2003) Sample metallization for performance improvement in desorption/ionization of kilodalton molecules:quantitative evaluation, imaging secondary ion MS, and laser ablation. Anal Chem 75:6875. doi: 10.1021/ac0302105 CrossRefGoogle Scholar
  20. 20.
    Restrepo OA, Prabhakaran A, Hamraoui K, Wehbe N, Yunus S, Bertrand P, Delcorte A (2010) Mechanisms of metal-assisted secondary ion mass spectrometry: a mixed theoretical and experimental study. Surf Interface Anal 42:1030. doi: 10.1002/sia.3203 CrossRefGoogle Scholar
  21. 21.
    Restrepo OA, Delcorte A (2011) Molecular dynamics study of metal-organic samples bombarded by kiloelectronvolt projectiles. Surf Interface Anal 43:70. doi: 10.1002/sia.3411 CrossRefGoogle Scholar
  22. 22.
    Wang F, Hong X, Wang J, Kim KS (2011) Coordinate space translation technique for simulation of electronic process in the ion–atom collision. J Chem Phys 134:154308. doi: 10.1063/1.3581820 CrossRefGoogle Scholar
  23. 23.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theo Chim Acta 44:129. doi: 10.1007/BF00549096 CrossRefGoogle Scholar
  24. 24.
    Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427. doi: 10.1146/annurev.physchem.55.091602.094449 CrossRefGoogle Scholar
  25. 25.
    Marques M, Gross E (2003) In: Fiolhais C, Nogueira F, Marques M (eds) A primer in density functional theory. Springer, Berlin. doi: 10.1007/3-540-37072-2
  26. 26.
    Marques M, Ullrich C, Nogueira F, Rubio A, Burke K, Gross EKU (2006) Time-dependent density functional theory. Springer, Berlin. doi: 10.1007/b11767107 CrossRefGoogle Scholar
  27. 27.
    Engel E, Dreizler RM (2011) Density functional theory. Springer, Berlin. doi: 10.1007/978-3-642-14090-7
  28. 28.
    Gross EKU, Maitra N (2012) Fundamentals of time-dependent density functional theory. Springer, Berlin. doi: 10.1007/978-3-642-23518-4 Google Scholar
  29. 29.
    Marques MAL, Castro A, Bertsch GF, Rubio A (2003) Octopus: a first-principles tool for excited electron-ion dynamics. Comput Phys Commun 151:60. doi: 10.1016/S0010-4655(02)00686-0 CrossRefGoogle Scholar
  30. 30.
    Castro A, Heiko A, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques MAL, Gross EKU, Rubio A (2006) Octopus: a tool for the application of time-dependent density functional theory. Phys Status Solidi (b) 243:2465. doi: 10.1002/pssb.200642067 CrossRefGoogle Scholar
  31. 31.
    Alonso JL, Andrade X, Echenique P, Falceto F, Prada-Gracia D, Rubio A (2008) Efficient formalism for large-scale Ab Initio molecular dynamics based on time-dependent density functional theory. Phys Rev Lett 101:096403. doi: 10.1103/PhysRevLett.101.096403 CrossRefGoogle Scholar
  32. 32.
    Andrade X, Castro A, Zueco D, Alonso JL, Echenique P, Falceto F, Rubio Ángel (2009) Modified Ehrenfest formalism for efficient large-scale ab initio molecular dynamics. J Chem Theo Comp 5:728. doi: 10.1021/ct800518j CrossRefGoogle Scholar
  33. 33.
    Castro A, Marques MAL, Rubio A (2004) Propagators for the time-dependent Kohn–Sham equations. J Chem Phys 121:3425. doi: 10.1063/1.1774980 CrossRefGoogle Scholar
  34. 34.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048. doi: 10.1103/PhysRevB.23.5048 CrossRefGoogle Scholar
  35. 35.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244. doi: 10.1103/PhysRevB.45.13244 CrossRefGoogle Scholar
  36. 36.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993. doi: 10.1103/PhysRevB.43.1993 CrossRefGoogle Scholar
  37. 37.
    Belkic D (1978) A quantum theory of ionisation in fast collisions between ions and atomic systems. J Phys B At Mol Phys 11:3529. doi: 10.1088/0022-3700/11/20/015 CrossRefGoogle Scholar
  38. 38.
    Belkic D, Gayet R, Salin A (1979) Electron capture in high-energy ion-atom collisions. Phys Rep 56:279. doi: 10.1016/0370-1573(79)90035-8 CrossRefGoogle Scholar
  39. 39.
    Mergel V, Dörner R, Achler M, Khayyat Kh, Lencinas S, Euler J, Jagutzki O, Nüttgens S, Unverzagt M, Spielberger L, Wu W, Ali R, Ullrich J, Cederquist H, Salin A, Wood CJ, Olson RE, Belkić Dž, Cocke CL, Schmidt-Böcking H (1997) Intra-atomic electron-electron scattering in p-He collisions (Thomas Process) investigated by cold target recoil ion momentum spectroscopy. Phys Rev Lett 79:387. doi: 10.1103/PhysRevLett.79.387 CrossRefGoogle Scholar
  40. 40.
    Hasan A, Tooke B, Zapukhlyak M, Kirchner T, Schulz M (2006) Kinematically complete experiment on transfer excitation in intermediate-energy p + He collisions. Phys Rev A 74:032703. doi: 10.1103/PhysRevA.74.032703 CrossRefGoogle Scholar
  41. 41.
    Meister J, Schwarz WHE (1994) Principal components of ionicity. J Phys Chem 98:8245. doi: 10.1021/j100084a048 CrossRefGoogle Scholar
  42. 42.
    Stier PM, Barnett CF (1956) Charge exchange cross sections of hydrogen ions in gases. Phys Rev 103:896. doi: 10.1103/PhysRev.103.896 CrossRefGoogle Scholar
  43. 43.
    Barnett CF, Reynolds HK (1958) Charge exchange cross sections of hydrogen particles in gases at high energies. Phys Rev 109:355. doi: 10.1103/PhysRev.109.355 CrossRefGoogle Scholar
  44. 44.
    Williams JF (1967) Measurement of charge-transfer cross sections for 0.25- to 2.5-MeV protons and hydrogen atoms incident upon hydrogen and helium gases. Phys Rev 157:97. doi: 10.1103/PhysRev.157.97 CrossRefGoogle Scholar
  45. 45.
    Welsh LM, Berkner KH, Kaplan SN, Pyle RV (1967) Cross sections for electron capture by fast protons in H2, He, N2, and Ar. Phys Rev 158:85. doi: 10.1103/PhysRev.158.85 CrossRefGoogle Scholar
  46. 46.
    Jamorski C, Foresman JB, Thilgen C, Lüthi HP (2002) Assessment of time-dependent density-functional theory for the calculation of critical features in the absorption spectra of a series of aromatic donor–acceptor systems. J Chem Phys 116:8761. doi: 10.1063/1.1465404 CrossRefGoogle Scholar
  47. 47.
    Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin bacteriochlorin and bacteriochlorophyll spheroidene complexes. J Am Chem Soc 126:4007. doi: 10.1021/ja039556n CrossRefGoogle Scholar
  48. 48.
    Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119:2943. doi: 10.1063/1.1590951 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guillermo Avendaño-Franco
    • 1
  • Bernard Piraux
    • 1
  • Myrta Grüning
    • 2
  • Xavier Gonze
    • 1
  1. 1.Université Catholique de Louvain (UCL)Louvain-la-NeuveBelgium
  2. 2.Center for Computational Physics and Physics DepartmentUniversidade de CoimbraCoimbraPortugal

Personalised recommendations