Theoretical Chemistry Accounts

, 131:1268

Theoretical analysis of charge-transfer electronic spectra of methylated benzenes—TCNE complexes including solvent effects: approaching experiment

  • Pavel Mach
  • Šimon Budzák
  • Miroslav Medveď
  • Ondrej Kyseľ
Regular Article

Abstract

The paper brings new accurate theoretical description of charge-transfer (CT) electronic spectra of a complete series of methylated benzenes–tetracyanoethylene (NMB-TCNE) complexes and detail comparison with complete experimental data both in the gas phase and in polar media. It is shown that the energies of the first two (CT) absorption transition in these intermolecular EDA (electron donor–acceptor) complexes are described well by the CC2/aug-cc-pVTZ method. In agreement with experimental data, it reproduces well both the bathochromic shift of the two π(NMB) → π*(TCNE) transitions (ranging from 3.41 to 2.23 eV) with the increasing number of methyl groups N as well as the value of splitting between them. Nevertheless, the CC2 transitions are systematically smaller, that is, red-shifted, with respect to experimental quantities in the gas phase by ca. 0.15–0.2 eV, which is an inaccuracy of the CC2 approach. The TD-LC-BLYP method better describes studied CT transitions than PBE0 or B3LYP functionals; however, the transition energies are too sensitive to the fitting range separation factor μ. The PCM solvation model combined with the CIS or LC-BLYP methods predicts red solvent shifts for all the studied CT transitions in NMB-TCNE complexes due to a larger stabilization of the excited states compared to their ground states in the solvent. The stabilization increases with solvent polarity and decreases with increasing N. The CIS/PCM solvent shifts are smaller than experimental values (taken as the difference for the gas phase and the polar CH2Cl2 solvent) by 0.1–0.15 eV, that is, by 30–40 %, however, being more consistent than those obtained by TD-DFT functionals used. Experimentally interesting (hexamethylbenzene)2-TCNE complex (2:1) was also studied by the LC-BLYP approach. The exciton splitting together with the bathochromic effect on absorption in comparison with 1:1 complex was found.

Keywords

Charge-transfer complex Excitation energy CC2 Solvent effect 

Supplementary material

214_2012_1268_MOESM1_ESM.doc (216 kb)
Supplementary material 1 (DOC 216 kb)

References

  1. 1.
    Foster R (1969) Organic charge-transfer complexes. Academic Press, New YorkGoogle Scholar
  2. 2.
    McGlynn SP (1958) Chem Rev 58:1113CrossRefGoogle Scholar
  3. 3.
    Mulliken RS, Person WB (1969) Molecular complexes. Wiley, New YorkGoogle Scholar
  4. 4.
    Dega-Szafran Z, Kania A, Nowak-Wydra B, Szafran M (1994) J Mol Struct 322:223CrossRefGoogle Scholar
  5. 5.
    Anelli PL, Ashton PR, Ballardini R, Balzani V, Delgado M, Gandolfi MT, Goodnow TT, Kaifer AE, Philp D (1992) J Am Chem Soc 114:193CrossRefGoogle Scholar
  6. 6.
    Asakawa M, Ashton PR, Boyd SE, Brown CL, Gillard RE, Kocian O, Raymo FM, Stoddart JF, Tolley MS, White AJP, Williams DJ (1997) J Org Chem 62:26CrossRefGoogle Scholar
  7. 7.
    Bissell RA, Cordova E, Kaifer AE, Stoddart JF (1994) Nature 369:133CrossRefGoogle Scholar
  8. 8.
    Cordova E, Bissell RA, Kaifer AE (1995) J Org Chem 60:1033CrossRefGoogle Scholar
  9. 9.
    Lokey RS, Iverson BL (1995) Nature 375:303CrossRefGoogle Scholar
  10. 10.
    Toki A, Yonemura H, Matsuo T (1993) Bull Chem Soc Jpn 66:3382CrossRefGoogle Scholar
  11. 11.
    Fox M, Chanon M (eds) (1988) Photoinduced electron transfer. Elsvier, New YorkGoogle Scholar
  12. 12.
    Amin AS, El-Beshbeshy AM (2001) Microchim Acta 137:63CrossRefGoogle Scholar
  13. 13.
    Amin AS, Ahmed IS (2001) Microchim Acta 137:35CrossRefGoogle Scholar
  14. 14.
    Kysel O, Juhasz G, Mach P, Kosik G (2007) Chem Pap 61:66CrossRefGoogle Scholar
  15. 15.
    Kysel O, Budzak S, Medved M, Mach P (2008) Int J Quantum Chem 108:1533CrossRefGoogle Scholar
  16. 16.
    Kysel O, Budzak S, Mach P, Medved M (2010) Int J Quantum Chem 110:1712Google Scholar
  17. 17.
    Stires JC, McLaurin EJ, Kubiak CP (2005) Chem Commun 41:3532CrossRefGoogle Scholar
  18. 18.
    Headgordon M, Rico RJ, Oumi M, Lee TJ (1994) Chem Phys Lett 219:21CrossRefGoogle Scholar
  19. 19.
    Christiansen O, Koch H, Jorgensen P (1995) Chem Phys Lett 243:409CrossRefGoogle Scholar
  20. 20.
    Hattig C, Weigend F (2000) J Chem Phys 113:5154CrossRefGoogle Scholar
  21. 21.
    Hellweg A, Grun SA, Hattig C (2008) Phys Chem Chem Phys 10:4119CrossRefGoogle Scholar
  22. 22.
    Goerigk L, Grimme S (2010) J Chem Phys 132:184103CrossRefGoogle Scholar
  23. 23.
    Rhee YM, Head-Gordon M (2007) J Phys Chem A 111:5314CrossRefGoogle Scholar
  24. 24.
    Schirmer J (1982) Phys Rev A 26:2395CrossRefGoogle Scholar
  25. 25.
    Grimme S, Neese F (2007) J Chem Phys 127:154116CrossRefGoogle Scholar
  26. 26.
    Aquino AJA, Nachtigallova D, Hobza P, Truhlar DG, Hattig C, Lischka H (2011) J Comp Chem 32:1217CrossRefGoogle Scholar
  27. 27.
    Kim HJ (1996) J Chem Phys 105:6818CrossRefGoogle Scholar
  28. 28.
    Kim HJ (1996) J Chem Phys 105:6833CrossRefGoogle Scholar
  29. 29.
    Amovilli C, Barone V, Cammi R, Cances E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1999) Adv Quant Chem 32:227CrossRefGoogle Scholar
  30. 30.
    Aguilar MA, Delvalle FJO, Tomasi J (1993) J Chem Phys 98:7375CrossRefGoogle Scholar
  31. 31.
    Mikkelsen KV, Cesar A, Agren H, Jensen HJA (1995) J Chem Phys 103:9010CrossRefGoogle Scholar
  32. 32.
    Cammi R, Tomasi J (1995) Int J Quantum Chem 56:465CrossRefGoogle Scholar
  33. 33.
    Mennucci B, Cammi R, Tomasi J (1998) J Chem Phys 109:2798CrossRefGoogle Scholar
  34. 34.
    Cammi R, Frediani L, Mennucci B, Tomasi J, Ruud K, Mikkelsen KV (2002) J Chem Phys 117:13CrossRefGoogle Scholar
  35. 35.
    Horng ML, Gardecki JA, Papazyan A, Maroncelli M (1995) J Phys Chem 99:17311CrossRefGoogle Scholar
  36. 36.
    Grimme S (2006) J Comput Chem 27:1787CrossRefGoogle Scholar
  37. 37.
    Jacquemin D, Laurent AD, Perpete EA, Andre JM (2009) Int J Quantum Chem 109:3506CrossRefGoogle Scholar
  38. 38.
    Weigend F, Kohn A, Hattig C (2002) J Chem Phys 116:3175CrossRefGoogle Scholar
  39. 39.
    Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639CrossRefGoogle Scholar
  40. 40.
    Tsuneda T, Kamiya M, Morinaga N, Hirao K (2001) J Chem Phys 114:6505CrossRefGoogle Scholar
  41. 41.
    Dreuw A, Weisman JL, Head-Gordon M (2003) J Chem Phys 119:2943CrossRefGoogle Scholar
  42. 42.
    Bernasconi L, Sprik M, Hutter J (2003) J Chem Phys 119:12417CrossRefGoogle Scholar
  43. 43.
    Champagne B, Perpete EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489CrossRefGoogle Scholar
  44. 44.
    Tozer DJ, Handy NC (1998) J Chem Phys 109:10180CrossRefGoogle Scholar
  45. 45.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540CrossRefGoogle Scholar
  46. 46.
    Wong BM, Piacenza M, Sala FD (2009) Phys Chem Chem Phys 11:4498CrossRefGoogle Scholar
  47. 47.
    Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) Chem Phys Lett 465:226CrossRefGoogle Scholar
  48. 48.
    Koopmans T (1933) Physica 1:104CrossRefGoogle Scholar
  49. 49.
    Wv Niessen, Schirmer J, Cederbaum LS (1984) Comput Phys Rep 1:57CrossRefGoogle Scholar
  50. 50.
    Cederbaum LS, Domcke W (1977) Adv Chem Phys 36:205CrossRefGoogle Scholar
  51. 51.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999CrossRefGoogle Scholar
  52. 52.
    Scalmani G, Frisch MJ (2010) J Chem Phys 132:114110CrossRefGoogle Scholar
  53. 53.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 1. Gaussian. Gaussian, Inc., Wallingford, CTGoogle Scholar
  54. 54.
    Rappi AK, Casewit CJ, Colwell KS, Goddard WA, Skid WM (1992) J Am Chem Soc 114:10024CrossRefGoogle Scholar
  55. 55.
    Cossi M, Barone V (2001) J Chem Phys 115:4708CrossRefGoogle Scholar
  56. 56.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  57. 57.
    Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165CrossRefGoogle Scholar
  58. 58.
    Karlstrom G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222CrossRefGoogle Scholar
  59. 59.
    Klopper W, Manby FR, Ten-no S, Valeev EF (2006) Int Rev Phys Chem 25:427CrossRefGoogle Scholar
  60. 60.
    Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) J Am Chem Soc 122:3746CrossRefGoogle Scholar
  61. 61.
    Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Phys Chem A 106:4423CrossRefGoogle Scholar
  62. 62.
    Hobza P, Selzle HL, Schlag EW (1996) J Phys Chem 100:18790CrossRefGoogle Scholar
  63. 63.
    Antony J, Grimme S (2007) J Phys Chem A 111:4862CrossRefGoogle Scholar
  64. 64.
    Granatier J, Pitonak M, Hobza P (2012) Accuracy of several wave function and density functional theory methods for description of noncovalent interaction of saturated and unsaturated hydrocarbon dimers. J Chem Theory Comput. doi:10.1021/ct300215p Google Scholar
  65. 65.
    Cramer CJ (2002) Essentials of computational chemistry: theories and models. John Wiley, New YorkGoogle Scholar
  66. 66.
    Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:044118CrossRefGoogle Scholar
  67. 67.
    Chowdhury S, Kebarle P (1986) J Am Chem Soc 108:5453CrossRefGoogle Scholar
  68. 68.
    Mataga N, Kaifu Y, Koizumi M (1956) Bull Chem Soc Jpn 29:465CrossRefGoogle Scholar
  69. 69.
    Frey JE, Andrews AM, Ankoviac DG, Beaman DN, Dupont LE, Elsner TE, Lang SR, Zwart MAO, Seagle RE, Torreano LA (1990) J Org Chem 55:606CrossRefGoogle Scholar
  70. 70.
    Pawlukojc A, Sawka-Dobrowolska W, Bator G, Sobczyk L, Grech E, Nowicka-Scheibe J (2006) Chem Phys 327:311CrossRefGoogle Scholar
  71. 71.
    Liptay W, Rehm T, Wehning D, Schanne L, Baumann W, Lang W (1982) Z Naturforsch Teil A 37:1427Google Scholar
  72. 72.
    Smith ML, McHale JL (1985) J Phys Chem 89:4002CrossRefGoogle Scholar
  73. 73.
    Zaini R, Orcutt AC, Arnold BR (1999) Photochem Photobiol 69:443CrossRefGoogle Scholar
  74. 74.
    Maverick E, Trueblood KN, Bekoe DA (1978) Acta Crystallogr Sec B 34:2777CrossRefGoogle Scholar
  75. 75.
    Hanazaki I (1972) J Phys Chem 76:1982CrossRefGoogle Scholar
  76. 76.
    Merrifield RE, Phillips WD (1958) J Am Chem Soc 80:2778CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Pavel Mach
    • 1
  • Šimon Budzák
    • 2
  • Miroslav Medveď
    • 2
  • Ondrej Kyseľ
    • 2
  1. 1.Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovak Republic
  2. 2.Department of Chemistry, Faculty of Natural SciencesMatej Bel UniversityBanska BystricaSlovak Republic

Personalised recommendations