Theoretical Chemistry Accounts

, 131:1267 | Cite as

Accurate time-dependent density functional theory calculations of the near edge X-ray absorption fine structure of large systems

  • Stephen T. Skowron
  • Nicholas A. Besley
Regular Article


It is shown that by using a numerical integration grid of low quality and large two-electron pre-screening threshold, the computational cost of computing near-edge X-ray absorption fine structure (NEXAFS) spectra within time-dependent density functional theory can be reduced significantly with a very small loss in accuracy. This allows accurate NEXAFS spectra to be computed for relatively large molecules involving excitations from a large number of core orbitals using short-range corrected exchange-correlation functionals. The approach is illustrated by calculations of the carbon K-edge NEXAFS spectra of coronene and two semi-conducting polymers, where the calculations give good agreement with experiment and allow the origin of the different spectral features to be assigned.


NEXAFS TDDFT Large molecules 



The authors would like to thank the University of Nottingham for access to its High Performance Computing facility.


  1. 1.
    Stöhr J (1996) NEXAFS spectroscopy, Springer series in surface science. Springer, HeidelbergGoogle Scholar
  2. 2.
    Nilsson A, Pettersson LGM (2004) Surf Sci Rep 55:49CrossRefGoogle Scholar
  3. 3.
    DuBois JL, Mukherjee PM, Stack TDP, Hedman B, Solomon EI, Hodgson KO (2000) J Am Chem Soc 122:5775CrossRefGoogle Scholar
  4. 4.
    Solomon EI, Szilagyi RK, George SD, Basumallick L (2004) Chem Rev 104:419CrossRefGoogle Scholar
  5. 5.
    Penner-Hahn JE (2005) Coord Chem Rev 249:161CrossRefGoogle Scholar
  6. 6.
    Wernet P, Nordlund D, Bergmann U, Cavalleri M, Ogasawara H, Näslund LA, Hirsch TK, Ojamae L, Glatzel P, Pettersson LGM, Nilsson A (2004) Science 304:995CrossRefGoogle Scholar
  7. 7.
    Hunt WJ, Goddard WA III (1969) Chem Phys Lett 3:414CrossRefGoogle Scholar
  8. 8.
    Ågren H, Carravetta V, Vahtras O, Pettersson LGM (1994) Chem Phys Lett 222:75CrossRefGoogle Scholar
  9. 9.
    Ågren H, Carravetta V, Vahtras O, Pettersson LGM (1997) Theor Chem Acta 97:14CrossRefGoogle Scholar
  10. 10.
    Stener M, Lisini A, Decleva P (1995) Chem Phys 191:141CrossRefGoogle Scholar
  11. 11.
    Triguero L, Pettersson LGM, Ågren H (1998) Phys Rev B 58:8097CrossRefGoogle Scholar
  12. 12.
    Hsu H, Davidson ER, Pitzer RM (1976) J Chem Phys 65:609CrossRefGoogle Scholar
  13. 13.
    Navesde Brito A, Correla N, Svensson S, Ågren H (1991) J Chem Phys 95:2965CrossRefGoogle Scholar
  14. 14.
    Gilbert ATB, Besley NA, Gill PMW (2008) J Phys Chem A 112:13171CrossRefGoogle Scholar
  15. 15.
    Besley NA, Gilbert ATB, Gill PMW (2009) J Chem Phys 130:124308CrossRefGoogle Scholar
  16. 16.
    Besley NA, Asmuruf FA (2009) Phys Chem Chem Phys 12:12024CrossRefGoogle Scholar
  17. 17.
    Imamura Y, Otsuka T, Nakai H (2006) J Comp Chem 28:2067CrossRefGoogle Scholar
  18. 18.
    Nakata A, Imamura Y, Ostuka T, Nakai H (2006) J Chem Phys 124:094105CrossRefGoogle Scholar
  19. 19.
    Nakata A, Imamura Y, Nakai H (2006) J Chem Phys 125:064109CrossRefGoogle Scholar
  20. 20.
    Nakata A, Imamura Y, Nakai H (2007) J Chem Theory Comput 3:1295CrossRefGoogle Scholar
  21. 21.
    Besley NA, Noble A (2007) J Phys Chem C 111:3333CrossRefGoogle Scholar
  22. 22.
    Song J-W, Watson MA, Nakata A, Hirao K (2008) J Chem Phys 129:184113CrossRefGoogle Scholar
  23. 23.
    Besley NA, Peach MJG, Tozer DJ (2009) Phys Chem Chem Phys 11:10350CrossRefGoogle Scholar
  24. 24.
    Hirata S, Head-Gordon M (1999) Chem Phys Lett 314:291CrossRefGoogle Scholar
  25. 25.
    Davidson DR (1975) J Computat Phys 17:87CrossRefGoogle Scholar
  26. 26.
    Tsuchimochi T, Kobayashi M, Nakata A, Imamura Y, Nakai H (2008) J Comput Chem 29:2311CrossRefGoogle Scholar
  27. 27.
    Ekström U, Norman P (2006) Phys Rev A 74:042722CrossRefGoogle Scholar
  28. 28.
    Ekström U, Norman P, Carravetta V, Ågren H (2006) Phys Rev Lett 97:143001CrossRefGoogle Scholar
  29. 29.
    Stener M, Fronzoni G, de Simone M (2003) Chem Phys Lett 373:115CrossRefGoogle Scholar
  30. 30.
    George SD, Petrenko T, Neese F (2008) Inorg Chim Acta 361:965CrossRefGoogle Scholar
  31. 31.
    Asmuruf FA, Besley NA (2008) J Chem Phys 129:064705CrossRefGoogle Scholar
  32. 32.
    Song J-W, Hirosawa T, Tsuneda T, Hirao K (2007) J Chem Phys 126:154105CrossRefGoogle Scholar
  33. 33.
    Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785CrossRefGoogle Scholar
  34. 34.
    Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA Jr, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Voorhis TV, Chien S-H, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu C-P, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL III, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF III, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Phys Chem Chem Phys 8:3172CrossRefGoogle Scholar
  35. 35.
    Gill PMW, Johnson BG, Pople JA (1993) Chem Phys Lett 209:506CrossRefGoogle Scholar
  36. 36.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  37. 37.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  38. 38.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358CrossRefGoogle Scholar
  39. 39.
    Oji H, Mitsumoto R, Ito E, Ishii H, Ouchi Y, Seki K, Yokoyama T, Ohta T, Kosugi N (1998) J Chem Phys 109:10409CrossRefGoogle Scholar
  40. 40.
    Watts B, Swaraj S, Nordlund D, Lüning J, Ade H (2011) J Chem Phys 134:024702CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of ChemistryUniversity of NottinghamNottinghamUK

Personalised recommendations