Advertisement

Spin trapping of hydroperoxyl radical by a cyclic nitrone conjugated to β-cyclodextrin: a computational study

  • Xiaoguang Bao
  • Peng Tao
  • Frederick A. Villamena
  • Christopher M. HadadEmail author
Regular Article

Abstract

Spin trapping of hydroperoxyl radical (HOO·) by the amide-linked conjugate of 5-carbamoyl-5-methyl-1-pyrroline N-oxide (AMPO) to β-cyclodextrin (β-CD) was studied computationally using a two-layered ONIOM method. From a conformational perspective, the “internal” conformation of 5R-β-CD-AMPO is more favored than the “external” conformation in which the nitrone is located outside of the cavity of the β-CD. When the HOO· addition product is formed, the most stable isomer has the nitroxyl (N1–O1) moiety pointing inside the cavity of the β-CD. Thus, this “internal” conformation might protect the N1–O1 moiety of the resulting spin adduct from access by reducing agents, thereby improving the lifetime of the radical adduct. The computed energetic barrier for HOO· addition to the 5R-β-CD-AMPO is 8.7 kcal/mol, which is marginally smaller than spin trapping by the non-conjugated AMPO (that is, without the β-CD). To optimize the reactivity of the β-CD-AMPO conjugate, the effect of a spacer unit between the AMPO segment and the β-CD moiety with varying methylene units, (CH2) n (n = 1, 2, 3), on the energetics of HOO· addition was evaluated. The structure with only one methylene spacer (n = 1) appears to be optimal as determined by the smaller activation barrier (6.2 kcal/mol) for HOO· addition to the nitrone moiety. Compared with very time-consuming quantum mechanical methods, the ONIOM method appears to offer significant advantages for evaluation of the best β-CD-AMPO conjugate for trapping of such reactive oxygen species and providing for the rational design of novel nitrones as spin traps.

Keywords

Nitrone Spin trapping Hydroperoxyl radical Electron paramagnetic resonance spectroscopy Cyclodextrin 

Notes

Acknowledgments

Financial support from the National Institutes of Health (R01-HL081248) is acknowledged. The Ohio Supercomputer Center (OSC) provided generous computational support of this research. We thank Dr. Shubham Vyas for technical assistance.

Supplementary material

The optimized structures of “internal” and “external” conformation of 5S-β-CD-AMPO, some other isomers of spin-adduct products, PES scans of the C2–Ob bond cleavage of 5R-β-CD-A-(CH2) n -MPO-HOO (n = 1, 2, 3) and the corresponding reactant complex, TS and product structures are provided in the supporting information. Supplementary material 1 (AVI 3403 kb)

Supplementary material 2 (AVI 3586 kb)

214_2012_1248_MOESM3_ESM.doc (4.3 mb)
Supplementary material 3 (DOC 4401 kb)
214_2012_1248_MOESM4_ESM.pdf (85 kb)
Supplementary material 4 (PDF 84 kb)

References

  1. 1.
    Halliwell B (2001) Drugs Aging 18:685CrossRefGoogle Scholar
  2. 2.
    Zweier JL, Talukder MAH (2006) Cardiovasc Res 70:181CrossRefGoogle Scholar
  3. 3.
    Zweier JL, Villamena FA (2003) Chemistry of free radicals in biological systems. In: Kukin ML, Fuster V (eds) Oxidative stress and cardiac failure. Futura Publishing Co., New York, p 67–95Google Scholar
  4. 4.
    De Grey ADNJ (2002) DNA Cell Biol 21:251CrossRefGoogle Scholar
  5. 5.
    Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, OxfordGoogle Scholar
  6. 6.
    Lai EK, McCay PB, Noguchi T, Fong KL (1979) Biochem Pharm 28:2231CrossRefGoogle Scholar
  7. 7.
    Shridhar R, Beaumont PC, Powers ELJ (1986) Radioanal Nuclear Chem 101:227CrossRefGoogle Scholar
  8. 8.
    Kotake Y, Janzen EG (1991) J Am Chem Soc 113:9503CrossRefGoogle Scholar
  9. 9.
    Janzen EG, Kotake Y, Hinton RD (1992) Free Rad Biol Med 12:169CrossRefGoogle Scholar
  10. 10.
    Villamena FA, Zweier JL (2004) Antioxid Red Signal 6:619–629CrossRefGoogle Scholar
  11. 11.
    Finkelstein E, Rosen GM, Rauckman EJ (1980) J Am Chem Soc 102:4994CrossRefGoogle Scholar
  12. 12.
    Samuni A, Murali Krishna C, Riesz P, Finkelstein E, Russo A (1989) Free Rad Biol Med 6:141CrossRefGoogle Scholar
  13. 13.
    Makino K, Hagiwara T, Imaishi H, Nishi M, Fuji S, Ohya H, Murakami A (1990) Free Radical Res Commun 9:233CrossRefGoogle Scholar
  14. 14.
    Finkelstein E, Rosen GM, Rauckman EJ (1982) Mol Pharmacol 21:262Google Scholar
  15. 15.
    Buettner GR, Oberley LW (1978) Biochem Biophys Res Commun 83:69CrossRefGoogle Scholar
  16. 16.
    Hinton RD, Janzen EGJ (1992) Org Chem 57:2646CrossRefGoogle Scholar
  17. 17.
    Zeghdaoui A, Tuccio B, Finet J-P, Cerri V, Tordo P (1995) J Chem Soc, Perkin Trans 1:2087Google Scholar
  18. 18.
    Janzen EG, Zhang Y-K, Haire DL (1994) Magn Reson Chem 32:711CrossRefGoogle Scholar
  19. 19.
    Fréjaville C, Karoui H, Tuccio B, Le Moigne F, Culcasi M, Pietri S, Lauricella R, Tordo P (1994) J Chem Soc Chem Commun 1793Google Scholar
  20. 20.
    Fréjaville C, Karoui H, Tuccio B, Le Moigne F, Culcasi M, Pietri S, Lauricella R, Tordo PJ (1995) Med Chem 38:258CrossRefGoogle Scholar
  21. 21.
    Stolze K, Udilova N, Nohl H (2002) Biol Chem 383:813CrossRefGoogle Scholar
  22. 22.
    Stolze K, Udilova N, Rosenau T, Hofinger A, Nohl H (2003) Biol Chem 384:493CrossRefGoogle Scholar
  23. 23.
    Zhao H, Joseph J, Zhang H, Karoui H, Kalyanaraman B (2001) Free Radical Biol Med 31:599CrossRefGoogle Scholar
  24. 24.
    Olive G, Mercier A, Le Moigne F, Rockenbauer A, Tordo P (2000) Free Radical Biol Med 28:403CrossRefGoogle Scholar
  25. 25.
    Tsai P, Pou S, Straus R, Rosen GM (1999) J Chem Soc, Perkin Trans 2:1759Google Scholar
  26. 26.
    Rosen GM, Tsai P, Barth ED, Dorey G, Casara P, Spedding M, Halpern HJ (2000) J Org Chem 65:4460CrossRefGoogle Scholar
  27. 27.
    Astolfi P, Marini M, Stipa P (2007) J Org Chem 72:8677CrossRefGoogle Scholar
  28. 28.
    Ouari O, Polidori A, Pucci B, Tordo P, Chalier F (1999) J Org Chem 64:3554CrossRefGoogle Scholar
  29. 29.
    Han Y, Liu Y, Rockenbauer A, Zweier JL, Durand G, Villamena FA (2009) J Org Chem 74:5369CrossRefGoogle Scholar
  30. 30.
    Bardelang D, Rockenbauer A, Karoui H, Finet JP, Tordo P (2005) J Phys Chem B 109:10521CrossRefGoogle Scholar
  31. 31.
    Bardelang D, Charles L, Finet JP, Jicsinszky L, Karoui H, Marque SRA, Monnier V, Rockenbauer A, Rosas R, Tordo P (2007) Chem Eur J 13:9344CrossRefGoogle Scholar
  32. 32.
    Polovyanenko DN, Marque SRA, Lambert S, Jicsinszky L, Plyusnin VF, Bagryanskaya EG (2008) J Phys Chem B 112:13157CrossRefGoogle Scholar
  33. 33.
    Han Y, Tuccio B, Lauricella R, Villamena FA (2008) J Org Chem 73:7108CrossRefGoogle Scholar
  34. 34.
    Villamena FA, Merle JK, Hadad CM, Zweier JL (2007) J Phys Chem A 111:9995CrossRefGoogle Scholar
  35. 35.
    Villamena FA, Hadad CM, Zweier JL (2003) J Phys Chem A 107:4407CrossRefGoogle Scholar
  36. 36.
    Villamena FA, Hadad CM, Zweier JL (2004) J Am Chem Soc 126:1816CrossRefGoogle Scholar
  37. 37.
    Villamena FA, Hadad CM, Zweier JL (2005) J Phys Chem A 109:1662CrossRefGoogle Scholar
  38. 38.
    Villamena FA, Merle JK, Hadad CM, Zweier JL (2005) J Phys Chem A 109:6083CrossRefGoogle Scholar
  39. 39.
    Villamena FA, Merle JK, Hadad CM, Zweier JL (2005) J Phys Chem A 109:6089CrossRefGoogle Scholar
  40. 40.
    Villamena FA, Rockenbauer A, Gallucci J, Velayutham M, Hadad CM, Zweier JL (2004) J Org Chem 69:7994CrossRefGoogle Scholar
  41. 41.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357CrossRefGoogle Scholar
  42. 42.
    Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JA Jr, Morokuma K, Frisch MJ (2006) J Chem Theory Comput 2:815CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg, JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision B.05. Gaussian, Inc., Wallingford CTGoogle Scholar
  44. 44.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  45. 45.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  46. 46.
    Stewart JJP (1989) J Comput Chem 10:221CrossRefGoogle Scholar
  47. 47.
    Liu L, Guo QX (2004) J Incl Phenom Macrocycl Chem 50:95Google Scholar
  48. 48.
    Gordon MT, Lowary TL, Hadad CM (2000) J Org Chem 65:4954CrossRefGoogle Scholar
  49. 49.
    Anconi CPA, Nascimento CS, Fedoce-Lopes J, Dos Santos HF, De Almeida WB (2007) J Phys Chem A 111:12127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xiaoguang Bao
    • 1
  • Peng Tao
    • 2
  • Frederick A. Villamena
    • 3
  • Christopher M. Hadad
    • 1
    Email author
  1. 1.Department of ChemistryOhio State UniversityColumbusUSA
  2. 2.Department of ChemistryWayne State UniversityDetroitUSA
  3. 3.Department of Pharmacology, Davis Heart and Lung Research InstituteOhio State UniversityColumbusUSA

Personalised recommendations