Advertisement

Relativistic segmented contraction basis sets with core-valence correlation effects for atoms 57La through 71Lu: Sapporo-DK-nZP sets (n = D, T, Q)

  • Masahiro Sekiya
  • Takeshi NoroEmail author
  • Toshikatsu Koga
  • Tsuyoshi Shimazaki
Regular Article

Abstract

For the 15 lanthanide atoms 57La through 71Lu, we report Sapporo-DK-nZP sets (n = D, T, Q), which are natural extensions of the Sapporo-(DK)-nZP sets for lighter atoms and efficiently incorporate the correlation among electrons in the N through P shells as well as the relativistic effect. The present sets well describe the correlation among the 4s and 4p electrons, which are important in the excitation of 4f electrons. Atomic test calculations of 57La, 58Ce, 59Pr, and 60Nd at configuration interaction with the Davidson correction level of theory confirm high performance of the present basis sets. Molecular test calculations are carried out for 57LaF and 70YbF diatomics at the coupled-cluster level of theory. The calculated spectroscopic constants approach smoothly to the experimental values as the quality of the basis set increases.

Keywords

Segmented basis sets Core-valence correlations Relativistic all electron calculations Lanthanide atoms 

References

  1. 1.
    Noro T, Sekiya M, Koga T (2012) Theor Chem Acc 131:1124CrossRefGoogle Scholar
  2. 2.
    Hess BA (1986) Phys Rev A 33:3742CrossRefGoogle Scholar
  3. 3.
    Nakajima T, Hirao K (2000) J Chem Phys 113:7786CrossRefGoogle Scholar
  4. 4.
    Moriyama H, Watanabe Y, Nakano H, Tatewaki H (2008) J Phys Chem A 112:2683CrossRefGoogle Scholar
  5. 5.
    Gomes ASP, Dyall KG, Visscher L (2010) Theor Chem Acc 127:369CrossRefGoogle Scholar
  6. 6.
    Roos BO, Lindh R, Malmqvist PA, Veryazov V, Widmark PO, Borin AC (2008) J Phys Chem A 112:11431CrossRefGoogle Scholar
  7. 7.
    Sekiya M, Noro T, Miyoshi E, Osanai Y, Koga T (2006) J Comput Chem 27:463CrossRefGoogle Scholar
  8. 8.
    Noro T, Sekiya M, Koga T (1997) Theor Chem Acc 98:25CrossRefGoogle Scholar
  9. 9.
    Sekiya M, Noro T, Koga T, Matsuyama H (1998) J Mol Struct (Theochem) 451:51CrossRefGoogle Scholar
  10. 10.
    Noro T, Sekiya M, Koga T, Matsuyama H (2000) Theor Chem Acc 104:146CrossRefGoogle Scholar
  11. 11.
    Sekiya M, Noro T, Osanai Y, Koga T (2001) Theor Chem Acc 106:297CrossRefGoogle Scholar
  12. 12.
    Osanai Y, Sekiya M, Noro T, Koga T (2003) Mol Phys 101:65CrossRefGoogle Scholar
  13. 13.
    Noro T, Sekiya M, Koga T (2003) Theor Chem Acc 109:85CrossRefGoogle Scholar
  14. 14.
    Noro T, Sekiya M, Osanai Y, Miyoshi E, Koga T (2003) J Chem Phys 119:5142CrossRefGoogle Scholar
  15. 15.
    Osanai Y, Noro T, Miyoshi E, Sekiya M, Koga T (2004) J Chem Phys 120:6408CrossRefGoogle Scholar
  16. 16.
    Noro T, Sekiya M, Osanai Y, Koga T, Matsuyama H (2007) J Comput Chem 28:2511CrossRefGoogle Scholar
  17. 17.
    Noro T, Sekiya M, Koga T (2008) Theor Chem Acc 121:289CrossRefGoogle Scholar
  18. 18.
    Sekiya M, Noro T, Koga T, Saito SL (2010) J Comput Chem 31:497Google Scholar
  19. 19.
    Visscher L, Dyall KG (1997) At Data Nucl Data Tables 67:207CrossRefGoogle Scholar
  20. 20.
    Powell MJD (1964) Comput J 7:155CrossRefGoogle Scholar
  21. 21.
    Tatewaki H, Koga T, Takashima H (1997) Theor Chem Acc 96:243CrossRefGoogle Scholar
  22. 22.
    Koga T, Tatewaki H, Matsuyama H, Satoh Y (1999) Theor Chem Acc 102:105CrossRefGoogle Scholar
  23. 23.
    Koga T, Yamamoto S, Shimazaki T, Tatewaki H (2002) Theor Chem Acc 108:41CrossRefGoogle Scholar
  24. 24.
    Saito SL (2009) J Chem Phys 130:074306CrossRefGoogle Scholar
  25. 25.
    Noro T, Sekiya M, Koga T, Saito SL (2009) Chem Phys Lett 481:229CrossRefGoogle Scholar
  26. 26.
    Sasaki F, Sekiya M, Noro T, Ohtsuki K, Osanai Y (1993) METECC-94. STEF, CagliariGoogle Scholar
  27. 27.
    Huzinaga S, Klobukowski M (1993) Chem Phys Lett 212:260CrossRefGoogle Scholar
  28. 28.
    Davidson ER, Silver DW (1977) Chem Phys Lett 52:403CrossRefGoogle Scholar
  29. 29.
    Ralchenko Y, Kramida AE, Reader J (2011) NIST atomic spectra database (ver. 4.1.0)Google Scholar
  30. 30.
    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, and others (2010) MOLPRO, version 2010.1, a package of ab initio programGoogle Scholar
  31. 31.
    Cao X, Liu W, Dolg M (2002) Sci China B45:91Google Scholar
  32. 32.
    Fahs H, Allouche AR, Korek M, Aubert-Frécon M (2002) J Chem Phys 117:3715CrossRefGoogle Scholar
  33. 33.
    Heiberg H, Gropen O, Laerdahl JK, Swang O, Wahlgren U (2003) Theor Chem Acc 110:118CrossRefGoogle Scholar
  34. 34.
    Su T, Yang C, Wang X, Bai F, Wang M (2009) Chem Phys Lett 467:265CrossRefGoogle Scholar
  35. 35.
    Bernard A, Effantin C, d’Incan J, Vergès J (2000) J Mol Spect 202:163CrossRefGoogle Scholar
  36. 36.
    Kaledin LA, Heaven MC, Field RW (1999) J Mol Spect 193:285CrossRefGoogle Scholar
  37. 37.
    Bernard A, Effantin C, d’Incan J, Vergès J (2000) J Mol Spect 204:55CrossRefGoogle Scholar
  38. 38.
    Bernard A, Effantin C, Shenyavskaya EA, d’Incan J (2001) J Mol Spect 207:211CrossRefGoogle Scholar
  39. 39.
    Dickinson CS, Coxon JA, Walker NR, Gerry CL (2001) J Chem Phys 115:6979CrossRefGoogle Scholar
  40. 40.
    Dunfield KL, Linton C, Clarke TE, McBride J, Adam AG, Peers JRD (1995) J Mol Spect 174:433CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Masahiro Sekiya
    • 1
  • Takeshi Noro
    • 2
    Email author
  • Toshikatsu Koga
    • 3
  • Tsuyoshi Shimazaki
    • 4
  1. 1.Department of Intercultural StudiesTomakomai Komazawa UniversityTomakomaiJapan
  2. 2.Department of Chemistry, Faculty of ScienceHokkaido UniversitySapporoJapan
  3. 3.Applied Chemistry Research Unit, Graduate School of EngineeringMuroran Institute of TechnologyMuroranJapan
  4. 4.Technical DivisionMuroran Institute of TechnologyMuroranJapan

Personalised recommendations