Advertisement

Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran

  • Rachel Crespo-Otero
  • Mario Barbatti
Regular Article
Part of the following topical collections:
  1. Nascimento Festschrift Collection

Abstract

A formal derivation of the nuclear-ensemble method for absorption and emission spectrum simulations is presented. It includes discussions of the main approximations employed in the method and derivations of new features aiming at further developments. Additionally, a method for spectrum decomposition is proposed and implemented. The method is designed to provide absolute contributions of different classes of states (localized, diffuse, charge-transfer, delocalized) to each spectral band. The methods for spectrum simulation and decomposition are applied to the investigation of UV absorption of benzene, furan, and 2-phenylfuran, and of fluorescence of 2-phenylfuran.

Keywords

Electronic spectrum Absorption Fluorescence Spectrum simulation Excimer 2-Phenylfuran 

Notes

Acknowledgments

The authors acknowledge the fruitful discussions with Dr. Jan Goetze. This work is a contribution to the Festschrift issue in honor of Prof. Chaer Nascimento, who was co-advisor of the doctoral work of one of the authors (MB). Nascimento’s insightful analysis of fundamental issues in quantum chemistry [49] has inspired a whole generation of computational theoretical chemists.

Supplementary material

214_2012_1237_MOESM1_ESM.pdf (177 kb)
Supplementary material 1 (PDF 176 kb)

References

  1. 1.
    Koppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59CrossRefGoogle Scholar
  2. 2.
    Niu Y, Peng Q, Deng C, Gao X, Shuai Z (2010) J Phys Chem A 114:7817CrossRefGoogle Scholar
  3. 3.
    Tannor DJ, Heller EJ (1982) J Chem Phys 77:202CrossRefGoogle Scholar
  4. 4.
    Petrenko T, Neese F (2007) J Chem Phys 127:164319CrossRefGoogle Scholar
  5. 5.
    Barone V, Bloino J, Biczysko M, Santoro F (2009) J Chem Theory Comput 5:540CrossRefGoogle Scholar
  6. 6.
    Improta R, Barone V, Santoro F (2007) Angew Chem 119:409CrossRefGoogle Scholar
  7. 7.
    Barbatti M, Aquino AJA, Lischka H (2010) Phys Chem Chem Phys 12:4959CrossRefGoogle Scholar
  8. 8.
    Svoboda O, Oncak M, Slavícek P (2011) J Chem Phys 135:154301CrossRefGoogle Scholar
  9. 9.
    Bergsma JP, Berens PH, Wilson KR, Fredkin DR, Heller EJ (1984) J Phys Chem 88:612CrossRefGoogle Scholar
  10. 10.
    Saven JG, Skinner JL (1993) J Chem Phys 99:4391CrossRefGoogle Scholar
  11. 11.
    Kubo R (1969) Adv Chem Phys 15:101CrossRefGoogle Scholar
  12. 12.
    Schinke R (1995) Photodissociation dynamics: spectroscopy and fragmentation of small polyatomic molecules. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Crespo-Otero R, Barbatti M (2011) J Chem Phys 134:164305CrossRefGoogle Scholar
  14. 14.
    Barbatti M (2011) Phys Chem Chem Phys 13:4686CrossRefGoogle Scholar
  15. 15.
    Szalay PG, Aquino AJA, Barbatti M, Lischka H (2011) Chem Phys 380:9CrossRefGoogle Scholar
  16. 16.
    Greco NJ, Tor Y (2007) Tetrahedron 63:3515CrossRefGoogle Scholar
  17. 17.
    Sakurai JJ (1994) Modern quantum mechanics. Addison-Wesley, MassachusettsGoogle Scholar
  18. 18.
    Hilborn RC (1982) Am J Phys 50:982CrossRefGoogle Scholar
  19. 19.
    Lepage GP (1978) J Comput Phys 27:192CrossRefGoogle Scholar
  20. 20.
    Lukes V, Solc R, Barbatti M, Lischka H, Kauffmann HF (2010) J Theor Comput Chem 9:249CrossRefGoogle Scholar
  21. 21.
    Rikken GLJA (1995) Physica B 204:353CrossRefGoogle Scholar
  22. 22.
    Lampert RA, Meech SR, Metcalfe J, Phillips D, Schaap AP (1983) Chem Phys Lett 94:137CrossRefGoogle Scholar
  23. 23.
    Feynman RP (1982) Statistical mechanics: a set of lectures. The Benjamin/Cummings Publishing Company, LondonGoogle Scholar
  24. 24.
    Heller EJ (1981) Acc Chem Res 14:368CrossRefGoogle Scholar
  25. 25.
    Worth GA, Cederbaum LS (2004) Annu Rev Phys Chem 55:127CrossRefGoogle Scholar
  26. 26.
    Meister J, Schwarz WHE (1994) J Phys Chem 98:8245CrossRefGoogle Scholar
  27. 27.
    Casida M (1995) Time-dependent density functional response theory for molecules. In: Chong D (ed) Recent advances in density functional methods, part I. World Scientific, Singapore, p 155CrossRefGoogle Scholar
  28. 28.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51CrossRefGoogle Scholar
  29. 29.
    Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:044118CrossRefGoogle Scholar
  30. 30.
    Dunning TH (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  31. 31.
    Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143CrossRefGoogle Scholar
  32. 32.
    Christiansen O, Koch H, Jorgensen P (1995) Chem Phys Lett 243:409CrossRefGoogle Scholar
  33. 33.
    Hättig C, Weigend F (2000) J Chem Phys 113:5154CrossRefGoogle Scholar
  34. 34.
    Hättig C, Köhn A (2002) J Chem Phys 117:6939CrossRefGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian 09, revision A02. Gaussian, Inc., WallingfordGoogle Scholar
  36. 36.
    Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165CrossRefGoogle Scholar
  37. 37.
    Barbatti M, Granucci G, Ruckenbauer M, Plasser F, Pittner J, Persico M, Lischka H (2011). NEWTON-X: a package for Newtonian dynamics close to the crossing seam. www.newtonx.org
  38. 38.
    Barbatti M, Granucci G, Persico M, Ruckenbauer M, Vazdar M, Eckert-Maksic M, Lischka H (2007) J Photochem Photobiol A 190:228CrossRefGoogle Scholar
  39. 39.
    Wan J, Meller J, Hada M, Ehara M, Nakatsuji H (2000) J Chem Phys 113:7853CrossRefGoogle Scholar
  40. 40.
    Li X, Paldus J (2010) J Phys Chem A 114:8591CrossRefGoogle Scholar
  41. 41.
    Palmer MH, Walker IC, Ballard CC, Guest MF (1995) Chem Phys 192:111CrossRefGoogle Scholar
  42. 42.
    Angeli C (2009) J Comput Chem 30:1319CrossRefGoogle Scholar
  43. 43.
    Li Y, Wan J, Xu X (2007) J Comput Chem 28:1658CrossRefGoogle Scholar
  44. 44.
    Bolovinos A, Philis J, Pantos E, Tsekeris P, Andritsopoulos G (1982) J Mol Spectrosc 94:55CrossRefGoogle Scholar
  45. 45.
    Abu-Eittah R, Hilal R, Hamed MM (1981) Int J Quantum Chem 19:383CrossRefGoogle Scholar
  46. 46.
    Fally S, Carleer M, Vandaele AC (2009) J Quant Spectrosc Radiat Transf 110:766CrossRefGoogle Scholar
  47. 47.
    Pantos E, Philis J, Bolovinos A (1978) J Mol Spectrosc 72:36CrossRefGoogle Scholar
  48. 48.
    Suto M, Wang X, Shan J, Lee LC (1992) J Quant Spectrosc Radiat Transf 48:79CrossRefGoogle Scholar
  49. 49.
    Nascimento M, Barbosa A (2003) Quantum mechanics of many-electrons systems and the theories of chemical bond. In: Brändas EJ, Kryachko E (eds) Fundamental world of quantum chemistry, vol 1. Kluwer, Dordrecht, p 371Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations