Intermolecular exchange-induction energies without overlap expansion

  • Rainer Schäffer
  • Georg JansenEmail author
Regular Article


An approach to evaluate the second-order exchange-induction energies of symmetry-adapted intermolecular perturbation theory (SAPT) for single-determinant ground-state monomer wavefunctions has been derived. This approach is correct to all orders of the intermonomer overlap, that is, it takes multiple electron exchange between the monomers into account. The resulting formulae can be written in a compact way and implemented efficiently. Here, the method is employed to investigate the performance of the S 2- or single-exchange approximation at the Hartree-Fock-SAPT level. The list of test systems comprises the prototypical van der Waals- and hydrogen-bridge complexes Ne2, Ar–HF, and (H2O)2, but also the systems HeCl, NeNa+ and Li+F involving closed-shell ions. It was found that the errors introduced by the S 2-approximation are more pronounced for the second-order exchange-induction energy than for the first-order exchange energy. While these errors tend to be negligible throughout the well region of complexes such as the neon dimer, they start to be significant in the repulsive part of the well regions of systems such as the water dimer, and in particular for the ionic lithium fluoride molecule. The consequences of these findings for the Hartree-Fock level estimate of higher-order induction plus exchange-induction energies, which is frequently employed in SAPT are also discussed.


Intermolecular interactions Symmetry-adapted perturbation theory exchange-induction energy Single-exchange approximation Overlap expansion 

Supplementary material

214_2012_1235_MOESM1_ESM.pdf (84 kb)
PDF (84 KB)


  1. 1.
    Jeziorski B, Moszyński R, Szalewicz K (1994) Chem Rev 94:1887–1930CrossRefGoogle Scholar
  2. 2.
    Jeziorski B, Szalewicz K (2003) In: Wilson S (eds) Handbook of molecular physics and quantum chemistry, vol 3, part 2. Wiley, Chichester, pp 232–279Google Scholar
  3. 3.
    Szalewicz K (2012) WIREs Comput Mol Sci 2:254–272CrossRefGoogle Scholar
  4. 4.
    Szalewicz K, Jeziorski B (1979) Mol Phys 38:191–208CrossRefGoogle Scholar
  5. 5.
    Rybak S, Szalewicz K, Jeziorski B (1991) J Chem Phys 95:6579–6601CrossRefGoogle Scholar
  6. 6.
    Jeziorski B, Moszyński R, Ratkiewicz S, Rybak S, Szalewicz K, Williams HL (1993) In: Clementi E (eds) Methods and techniques in computational chemistry: METECC94, vol B, STEF, Cagliari, pp 79–129Google Scholar
  7. 7.
    Rijks W, Gerritsen M, Wormer PES (1989) Mol Phys 66:929–953CrossRefGoogle Scholar
  8. 8.
    Murrell JN, Randić M, Williams DR (1965) Proc R Soc Lond A 284:566–581CrossRefGoogle Scholar
  9. 9.
    Williams DR, Schaad LJ, Murrell JN (1967) J Chem Phys 47:4916–4922CrossRefGoogle Scholar
  10. 10.
    Chałasiński G, Jeziorski B, Andzelm J, Szalewicz K (1977) Mol Phys 33:971–977CrossRefGoogle Scholar
  11. 11.
    Chałasiński G, Jeziorski B (1977) Theor Chim Acta 46:277–290CrossRefGoogle Scholar
  12. 12.
    Hess O, Caffarel M, Huiszoon C, Claverie P (1990) J Chem Phys 92:6049–6060CrossRefGoogle Scholar
  13. 13.
    Korona T, Williams HL, Bukowski R, Jeziorski B, Szalewicz K (1997) J Chem Phys 106:5109–5122CrossRefGoogle Scholar
  14. 14.
    Jansen G, Heßelmann A (2001) J Phys Chem A 105:11156–11157CrossRefGoogle Scholar
  15. 15.
    Heßelmann A, Jansen G (2002) Chem Phys Lett 357:464–470CrossRefGoogle Scholar
  16. 16.
    Heßelmann A, Jansen G (2002) Chem Phys Lett 362:319–325CrossRefGoogle Scholar
  17. 17.
    Heßelmann A, Jansen G (2003) Chem Phys Lett 367:778–784CrossRefGoogle Scholar
  18. 18.
    Heßelmann A, Jansen G (2003) Phys Chem Chem Phys 5:5010–5014CrossRefGoogle Scholar
  19. 19.
    Heßelmann A, Jansen G, Schütz M (2005) J Chem Phys 122:014103/1–014103/17CrossRefGoogle Scholar
  20. 20.
    Williams HL, Chabalowski CF (2001) J Phys Chem A 105:646–659CrossRefGoogle Scholar
  21. 21.
    Misquitta AJ, Szalewicz K (2002) Chem Phys Lett 357:301–306CrossRefGoogle Scholar
  22. 22.
    Misquitta AJ, Jeziorski B, Szalewicz K (2003) Phys Rev Lett 91:033201/1–033201/4CrossRefGoogle Scholar
  23. 23.
    Misquitta AJ, Szalewicz K (2005) J Chem Phys 122:214109/1–214109/19CrossRefGoogle Scholar
  24. 24.
    Misquitta AJ, Podeszwa R, Jeziorski B, Szalewicz K (2005) J Chem Phys 123:214103/1–214103/14CrossRefGoogle Scholar
  25. 25.
    Bukowski R, Podeszwa R, Szalewicz K (2005) Chem Phys Lett 414:111–116CrossRefGoogle Scholar
  26. 26.
    Podeszwa R, Bukowski R, Szalewicz K (2006) J Chem Theory Comput 2:400–412CrossRefGoogle Scholar
  27. 27.
    Vissers GWM, Heßelmann A, Jansen G, Wormer PES, van der Avoird A (2005) J Chem Phys 122:054306/1–054306/11CrossRefGoogle Scholar
  28. 28.
    Tekin A, Jansen G (2005) Phys Chem Chem Phys 9:1680–1687CrossRefGoogle Scholar
  29. 29.
    Leforestier C, Tekin A, Jansen G, Herman M (2011) J Chem Phys 135:234306/1–234306/9Google Scholar
  30. 30.
    Lyhs B, Bläser D, Wölper C, Schulz S, Jansen G (2012) Angew Chem Int Ed 51:1970–1974CrossRefGoogle Scholar
  31. 31.
    van Duijneveldt-van de Rijdt JGCM, van Duijneveldt FB (1972) Chem Phys Lett 17:425-427Google Scholar
  32. 32.
    Jeziorski B, Bulski M, Piela L (1976) Int J Quantum Chem 10:281–297CrossRefGoogle Scholar
  33. 33.
    Hayes IC, Stone AJ (1984) Mol Phys 53:69–82CrossRefGoogle Scholar
  34. 34.
    Hayes IC, Stone AJ (1984) Mol Phys 53:83–105CrossRefGoogle Scholar
  35. 35.
    Figari G, Magnasco V (1985) Mol Phys 55:319–330CrossRefGoogle Scholar
  36. 36.
    Jeziorska M, Jeziorski B, Cizek J (1987) Int J Quantum Chem 32:149–164CrossRefGoogle Scholar
  37. 37.
    Moszyński R, Heijmen TGA, Jeziorski B (1996) Mol Phys 88:741–758Google Scholar
  38. 38.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  39. 39.
    Patkowski K, Szalewicz K, Jeziorski B (2006) J Chem Phys 125:154107/1–154107/20CrossRefGoogle Scholar
  40. 40.
    Patkowski K, Szalewicz K, Jeziorski B (2010) Theor Chem Acc 127:211–221CrossRefGoogle Scholar
  41. 41.
    Szabo A, Ostlund NS (1982) Modern quantum chemistry. Macmillan, New YorkGoogle Scholar
  42. 42.
    Vein R, Dale P (1999) Determinants and their applications in mathematical physics. Springer, New YorkGoogle Scholar
  43. 43.
    Werner H-J, Knowles PJ, Lindh T, Manby FR, Schütz M, et al (2008) MOLPRO, version 2008.2, a package of ab initio programs, see, Cardiff, UK
  44. 44.
    Torheyden M, Jansen G (2006) Mol Phys 104:2101–2138CrossRefGoogle Scholar
  45. 45.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  46. 46.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  47. 47.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371CrossRefGoogle Scholar
  48. 48.
    Woon DE, Dunning TH Jr (1994) J Chem Phys 100:2975–2988CrossRefGoogle Scholar
  49. 49.
    Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572–4585CrossRefGoogle Scholar
  50. 50.
    Lao KU, Herbert JM (2012) J Phys Chem A 116:3042–3047CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity Duisburg-EssenEssenGermany

Personalised recommendations