DFT/TDDFT investigation of the stepwise deprotonation in tetracycline: pKa assignment and UV–vis spectroscopy

  • Anna AmatEmail author
  • Simona FantacciEmail author
  • Filippo De Angelis
  • Benedetta Carlotti
  • Fausto Elisei
Regular Article


Tetracyclines are a class of derivatives of polycyclic naphthacene carboxamide, which have attracted wide interest in the pharmaceutical field for their use as antibiotics. These molecules are characterized by a substantial conformational flexibility and by the presence of different binding sites which endow tetracycline with a noticeable capability in binding biological targets. A salient property of tetracyclines is the presence of multiple acidic groups: four equilibrium constants have been measured for the fully protonated tetracycline (TCH3 +) but so far no clear information concerning the pKas of the various sites has been reported. We present here a computational investigation on the correlation between the acid–base and the spectroscopic properties of this important class of compounds. Starting from the TCH3 + species, the pKa of all the possible deprotonation sites has been computed by DFT calculations. The computed pKas nicely compare with the experimental data, within 1 pKa unit, allowing us to individuate the products of the first deprotonation. This procedure has been iteratively repeated using as starting species the products singled out from the previous deprotonation, thus individuating the stepwise products of each deprotonation step. Then, the optical absorption spectra have been computed for all the species involved in the protonation/deprotonation equilibria, comparing the results with the experimental data. The good agreement between theory and experiment has allowed us to rationalize the correlation between the solution pH and the absorption spectra.


Theoretical pKa assignment DFT/TDDFT calculations Simulation of UV–vis spectra 



AA, SF, and FDA thank Fondazione Istituto Italiano di Tecnologia, Project SEED 2009 “HELYOS”, and MIUR-PRIN 2008 (2008CSNZFR) for financial support. BC and FE gratefully acknowledge the financial support of the Ministero per l’Università e la Ricerca Scientifica e Tecnologica (Rome, Italy) and the University of Perugia [PRIN 2008, n. 20088NTBKR] and the Fondazione Cassa di Risparmio di Perugia.

Supplementary material

214_2012_1218_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1598 kb)


  1. 1.
    Carlotti B, Fuoco D, Elisei F (2010) Fast and ultrafast spectroscopic investigation of tetracycline derivatives in organic and aqueous media. Phys Chem Chem Phys 12:15580–15591CrossRefGoogle Scholar
  2. 2.
    Othersen OG, Beierlein F, Lanig H, Clark T (2003) Conformations and Tautomers of Tetracycline. J Phys Chem B 107:13743–13749CrossRefGoogle Scholar
  3. 3.
    Hillen W, Berens C (2002) Tetracyclin controlled gene regulation: from bacterial origin to eukaryotic tools. BIOspektrum 8:355–358Google Scholar
  4. 4.
    Hinrichs W, Kisker C, Düvel M, Müller A, Tovar K, Hillen W, Saenger W (1994) Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264:418–420CrossRefGoogle Scholar
  5. 5.
    Hinrichs W, Fenske ChG (2001) In: Nelson M, Hillen W, Greenwald RA (eds) Tetracyclines in Biology, Chemistry and Medicine. Birkhäuser Verlag, Basel, pp 107–123CrossRefGoogle Scholar
  6. 6.
    Gatz C, Quail PH (1998) Tn10-encoded tet repressor can regulate an operator-containing plant promoter. Proc Natl Acad Sci 85:1394–1397CrossRefGoogle Scholar
  7. 7.
    Gossen M, Bujard H (2001) In: Nelson M, Hillen W, Greenwald RA (eds) Tetracyclines in Biology, Chemistry and Medicine. Birkhäuser Verlag, Basel, pp 139–157CrossRefGoogle Scholar
  8. 8.
    Copra I, Roberts M (2001) Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol Mol Biol Rev 65:232–260CrossRefGoogle Scholar
  9. 9.
    Nelson ML, Ismail MY (2007) The antibiotic and nonantibiotic tetracyclines. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Hanemaaijer R, van Lent N, Sorsa T, Salo T, Konttinen YT, Lindeman J (2001) In: Nelson M, Hillen W, Greenwald RA (eds) Tetracyclines in Biology, Chemistry and Medicine. Birkhäuser Verlag, Basel, pp 267–281CrossRefGoogle Scholar
  11. 11.
    Schneider S, Schmitt MO, Brehm G, Reiher M, Matousek P, Towrie M (2003) Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+. Photochem Photobiol Sci 2:1107–1117CrossRefGoogle Scholar
  12. 12.
    Carlotti B, Cesaretti A, Elisei F (2012) Complexes of tetracyclines with divalent metal cations investigated by stationary and femtosecond-pulsed techniques. Phys Chem Chem Phys 14:823–834CrossRefGoogle Scholar
  13. 13.
    D’Agostino P, Ferlazzo V, Milano S, La Rosa M, Di Bella G, Caruso R, Barbera C, Grimaudo S, Tolomeo M, Feo S, Cillari E (2003) Chemically modified tetracyclines induce cytotoxic effects against J774 tumour cell line by activating the apoptotic pathway. Int Immunopharmacol 3:63–73CrossRefGoogle Scholar
  14. 14.
    Hatsu M, Sasaki T, Gomi S, Kodama Y, Sezaki M, Inouye S, Kondo S (1992) A new tetracycline antibiotic with antitumor activity. I. Taxonomy and fermentation of the producing strain, isolation and characterization of SF2575. J Antibiot 45:320–324CrossRefGoogle Scholar
  15. 15.
    Hatsu M, Sasaki T, Gomi S, Kodama Y, Sezaki M, Inouye S, Kondo S (1992) A new tetracycline antibiotic with antitumor activity. II. The structural elucidation of SF2575. J Antibiot 45:325–330CrossRefGoogle Scholar
  16. 16.
    Duivenvoorden WCM, Popovic SV, Lhotak S, Seidlitz E, Hirte HW, Tozer RG, Singh G (2002) Doxycycline Decreases Tumor Burden in a Bone Metastasis Model of Human Breast Cancer. Cancer Res 62:1588–1591Google Scholar
  17. 17.
    Lokeshwar BL, Selzer MG, Zhu BQ, Block NL, Golub LM (2002) Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int J Cancer 98:297–309CrossRefGoogle Scholar
  18. 18.
    Connell SR, Tracz DM, Nierhaus KH, Taylor DE (2003) Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47:3675–3681CrossRefGoogle Scholar
  19. 19.
    Nelson ML, Park BH, Levy SB (1994) Molecular Requirements for the Inhibition of the Tetracycline Antiport Protein and the Effect of Potent Inhibitors on the Growth of Tetracycline-Resistant Bacteria. J Med Chem 37:1355–1361CrossRefGoogle Scholar
  20. 20.
    Bastos LFS, Merlo LA, Rocha LTS, Coelho MM (2007) Characterization of the antinociceptive and anti-inflammatory activities of doxycycline and minocycline in different experimental models. Eur J Pharmacol 576:171–179CrossRefGoogle Scholar
  21. 21.
    D’Agostino P, Ferlazzo V, Milano S, La Rosa M, Di Bella G, Caruso R, Barbera C, Grimaudo CS, Tolomeo M, Feo S, Cillari E (2001) Anti-inflammatory effects of chemically modified tetracyclines by the inhibition of nitric oxide and interleukin-12 synthesis in J774 cell line. Int Immunopharmacol 1:1765–1776CrossRefGoogle Scholar
  22. 22.
    Howlett DR, George AR, Owen DE, Ward RV, Markwell RE (1999) Common structural features determine the effectiveness of carvedilol, daunomycin and rolitetracycline as inhibitors of Alzheimer b-amyloid fibril formation. Biochem J 343:419–423CrossRefGoogle Scholar
  23. 23.
    Cosentino U, Varí M, Saracino AG, Pitea D, Moro G, Salmona M (2005) Tetracycline and its analogues as inhibitors of amyloid fibrils: searching for a geometrical pharmacophore by theoretical investigation of their conformational behavior in aqueous solution. J Mol Model 11:17–25CrossRefGoogle Scholar
  24. 24.
    Cosentino U, Pitea D, Moro G, Saracino AG, Caria P, Varì R, Colombo L, Forloni G, Tagliavini F, Salmona M (2008) The anti-fibrillogenic activity of tetracyclines on PrP 106-126: a 3D-QSAR study. J Mol Model 14:987–994CrossRefGoogle Scholar
  25. 25.
    Ermak G, Cancasci VJ, Davies KJA (2003) Cytotoxic effect of doxycycline and its implications for tet-on gene expression systems. Anal Biochem 318:152–154CrossRefGoogle Scholar
  26. 26.
    Frost P, Weinstein GD, Gomez EC (1971) Methacycline and Demeclocycline in Relation to Sunlight. J Am Med Assoc 216:326–329CrossRefGoogle Scholar
  27. 27.
    Frost P, Weinstein GD, Gomez EC (1972) Phototoxic Potential of Minocycline and Doxycycline. Arch Dermatol 105:681–683CrossRefGoogle Scholar
  28. 28.
    Hasan T, Kochevar IE, McAuliffe DJ, Cooperman BS, Abdulah D (1984) Mechanism of Tetracycline Phototoxicity. J Invest Dermatol 83:179–183CrossRefGoogle Scholar
  29. 29.
    Kulshrestha P, Sukmar N, Murray JS, Giese RF, Wood TD (2009) Computational Prediction of Antibody Binding Sites on Tetracycline Antibiotics: Electrostatic Potentials and Average Local Ionization Energies on Molecular Surfaces. J Phys Chem A 113:756–766CrossRefGoogle Scholar
  30. 30.
    Dos Santos HF, Nascimento CS, Belletato P, De Almeida WB (2003) The conformational and tautomeric equilibrium of 5a,6-anhydrotetracycline in aqueous solution at pH 7. J MoL Struc (THEOCHEM) 626:305–319CrossRefGoogle Scholar
  31. 31.
    Hussein W, Walker CG, Peralta-Inga Z, Murray JS (2001) Computed electrostatic potentials and average local ionization energies on the molecular surfaces of some tetracyclines. Int J Quant Chem 82:160–169CrossRefGoogle Scholar
  32. 32.
    Murray JS, Peralta-Inga Z, Politzer P (2000) Computed molecular surface electrostatic potentials of the nonionic and zwitterionic forms of glycine, histidine, and tetracycline. Int J Quant Chem 80:1216–1223CrossRefGoogle Scholar
  33. 33.
    Marcial BL, Costa LAS, De Almeida WB, Anconi CPA, Dos Santos HF (2011) Interaction of chemically modified tetracyclines with catalytic Zn(II) ion in matrix metalloproteinase: evidence for metal coordination sites. Theor Chem Acc 128:377–388CrossRefGoogle Scholar
  34. 34.
    Marcial BL, Costa LAS, De Almeida WB, Dos Santos HF (2000) Structure and properties of the new complexes of platinum (II) with the chemically modified tetracycline CMT-3: A theoretical DFT study. J Mol Struc (THEOCHEM) 916:94–104CrossRefGoogle Scholar
  35. 35.
    Othersen OG, Weibel R, Lanig H, Gmeiner P, Clark T (2006) SCRF-DFT and NMR Comparison of Tetracycline and 5a,6-Anhydrotetracycline in Solution. J Chem Phys B 110:24766–24774CrossRefGoogle Scholar
  36. 36.
    Meindl K, Clark T (2005) Conformations and Tautomers of 5a,6-Anhydrotetracycline. J Chem Phys B 109:4279–4284CrossRefGoogle Scholar
  37. 37.
    Nicolas I, Vilchis M, Aragon M, Miranda R, Hojer G, Castro M (2003) Theoretical study of the structure and antimicrobial activity of horminone. Int J Quant Chem 93:411–421CrossRefGoogle Scholar
  38. 38.
    Leypold CF, Reiher M, Brehm G, Schmidtt MO, Schneider S, Matousek P, Towrie M (2003) Tetracycline and derivatives—assignment of IR and Raman spectra via DFT calculations. Phys Chem Chem Phys 5:1149–1157CrossRefGoogle Scholar
  39. 39.
    Marcial BL, Costa LAS, De Almeida WB, Dos Santos HF (2008) Reactivity of 5a,6-anhydrotetracycline platinum(II) complex with biological nucleophiles: a theoretical study. J Braz Chem Soc 19:1437–1449CrossRefGoogle Scholar
  40. 40.
    Dos Santos HF, Marcial BL, De Miranda CF, Costa LAS, De Almeida WB (2006) Structure and properties of the 5a,6-anhydrotetracycline–platinum(II) dichloride complex: A theoretical ab initio study. J Inorg Biochem 100:1594–1605CrossRefGoogle Scholar
  41. 41.
    De Almeida WB, Costa LAS, Dos Santos HF, Zerner MC (1997) A theoretical investigation of the near UV and VIS electronic spectra for the fully deprotonated forms of anhydrotetracycline. J Chem Soc, Perkin Trans 2:1335–1339Google Scholar
  42. 42.
    Duarte HA, Carvalho S, Paniago EB, Simas AM (1999) Importance of tautomers in the Chemical Behavior of Tetracyclines. J Phar Sci 88:111–120CrossRefGoogle Scholar
  43. 43.
    Schmitt MO, Schneider S, Nelson ML (2007) Novel Insight into the Protonation/Deprotonation Equilibria of Tetracycline and Several Derivatives in Aqueous Solution. II. Analysis of the pH-Dependent Fluorescence Spectra by the SVD Technique. Z Phys Chem 221:235–271CrossRefGoogle Scholar
  44. 44.
    Rigler NE, Bag SP, Leyden DE, Sudmeier JL, Reilley CN (1965) Determination of a protonation scheme of tetracycline using nuclear magnetic resonance. Anal Chem 37:872–875CrossRefGoogle Scholar
  45. 45.
    Qiang Z, Adams C (2004) Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res 38:2874–2890CrossRefGoogle Scholar
  46. 46.
    Babic S, Horvat AJM, Mutavdzic Pavlovic D, Kastelan-Macan M (2007) Determination of pKa values of active pharmaceutical ingredients. Trends Anal Chem 26:1043–1061CrossRefGoogle Scholar
  47. 47.
    Dos Santos HF, De Almeida WB, Zerner MC (1998) Conformational analysis of the anhydrotetracycline molecule: a toxic decomposition product of tetracycline. J Pharm Sci 87:190–195CrossRefGoogle Scholar
  48. 48.
    Amat A, Clementi C, De Angelis F, Sgamellotti A, Fantacci S (2009) Absorption and emission of the apigenin and luteolin flavonoids: a TDDFT investigation. J Phys Chem A 113:15118–15126CrossRefGoogle Scholar
  49. 49.
    Amat A, Rosi F, Miliani C, Sgamelloti A, Fantacci S (2011) Theoretical and experimental investigation on the spectroscopic properties of indigo dye. J Mol Struct 993:43–51CrossRefGoogle Scholar
  50. 50.
    Amat A, Clementi C, Miliani C, Romani A, Sgamellotti A, Fantacci S (2010) Complexation of apigenin and luteolin in weld lake: a DFT/TDDFT investigation. Phys Chem Chem Phys 12:6672–6684CrossRefGoogle Scholar
  51. 51.
    Hohenberg P, Kohn W (1964) Inhomogeneous Electron Gas. Phys Rev 136:864–871CrossRefGoogle Scholar
  52. 52.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) An Efficient Implementation of Time Dependent Density Functional Theory for the Calculation of Excitation Energies of Large Molecules. J Chem Phys 109:8218–8224CrossRefGoogle Scholar
  53. 53.
    Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464CrossRefGoogle Scholar
  54. 54.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449CrossRefGoogle Scholar
  55. 55.
    Gaussian 09 Revision A1 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CTGoogle Scholar
  56. 56.
    Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  57. 57.
    Lee C, Yang W, Parr RG (1998) Development of the Colle-Salvetti conelation energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  58. 58.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  59. 59.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comp Chem 22:976–984CrossRefGoogle Scholar
  60. 60.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J Comp Chem 4:294–301CrossRefGoogle Scholar
  61. 61.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comp Chem 24:669–681CrossRefGoogle Scholar
  62. 62.
    Amat A, De Angelis F, Sgamellotti A, Fantacci S (2008) Acid–base chemistry of luteolin and its methyl-ether derivatives: A DFT and ab initio investigation. Chem Phys Lett 462:313–317CrossRefGoogle Scholar
  63. 63.
    Alunni S, De Angelis F, Ottavi L, Papavasileiou M, Tarantelli F (2005) Evidence of a Borderline Region between E1cb and E2 Elimination Reaction Mechanisms: A Combined Experimental and Theoretical Study of Systems Activated by the Pyridine Ring. J Am Chem Soc 127:15151–15160CrossRefGoogle Scholar
  64. 64.
    Liptak MD, Shields GC (2001) Experimentation with different thermodynamic cycles used for pK a calculations on carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Int J Quant Chem 85:727–741CrossRefGoogle Scholar
  65. 65.
    Saracino GAA, Improta R, Barone V (2003) Absolute pKa determination for carboxylic acids using density functional theory and the polarizable continuum model. Chem Phys Lett 373:411–415CrossRefGoogle Scholar
  66. 66.
    da Silva C, da Silva E, Nascimento M (1999) Ab Initio Calculations of Absolute pK a Values in Aqueous Solution I. Carboxylic Acids. J Phys Chem A 103:11194–11199CrossRefGoogle Scholar
  67. 67.
    da Silva C, da Silva E, Nascimento M (2000) Ab Initio Calculations of Absolute pK a Values in Aqueous Solution II. Aliphatic Alcohols, Thiols, and Halogenated Carboxylic Acids. J Phys Chem A 104:2402–2409CrossRefGoogle Scholar
  68. 68.
    Liptak MD, Gross KC, Seybold PG, Feldgus S, Shield GC (2002) Absolute pKa Determinations for Substituted Phenols. J Am Chem Soc 124:6421–6427CrossRefGoogle Scholar
  69. 69.
    Liptak MD, Shields GC (2001) Accurate pKa Calculations for carboxylic acids using complete basis set and gaussian-n models combined with CPCM continuum solvation methods. J Am Chem Soc 123:7314–7319CrossRefGoogle Scholar
  70. 70.
    McQuarrie DM (1970) Statistical mechanics. Harper and Row, New YorkGoogle Scholar
  71. 71.
    Kelly CP, Cramer CJ, Truhlar DG (2006) Aqueous solvation free energies of ions and ion–water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110:16066–16081CrossRefGoogle Scholar
  72. 72.
    Zhan CG, Dixon DA (2001) Absolute Hydration Free Energy of the Proton from First-Principles Electronic Structure Calculations. J Phys Chem A 105:11534–11540CrossRefGoogle Scholar
  73. 73.
    Zhan CG, Dixon DA (2002) First-Principles Determination of the Absolute Hydration Free Energy of the Hydroxide Ion. J Phys Chem A 106:9737–9744CrossRefGoogle Scholar
  74. 74.
    Tissandier MD, Cowen KA, Yong Feng W, Gundlach E, Cohen MH, Earhart AD, Coe JV (1998) The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J Phys Chem A 102:7787–7794CrossRefGoogle Scholar
  75. 75.
    Kelly CP, Cramer CJ, Truhlar DG (2005) A Density Functional Theory continuum solvation model for calculating aqueous solvation free energies of neutrals, ions, and solute–water clusters. J Chem Theory Comput 1:1133–1152CrossRefGoogle Scholar
  76. 76.
    Gao D, Svoronos P, Wong PK, Maddalena D, Hwang J, Walker H (2005) pK a of acetate in water:  a computational study. J Phys Chem A 109:10776–10785CrossRefGoogle Scholar
  77. 77.
    Cao Z, Lin M, Zhang Q, Mo Y (2004) Studies of Solvation Free Energies of Methylammoniums and Irregular Basicity Ordering of Methylamines in Aqueous Solution by a Combined Discrete-Continuum Model. J Phys Chem A 108:4277–4282CrossRefGoogle Scholar
  78. 78.
    Lu H, Chen X, Zhan CG (2007) First-Principles Calculation of pK a for Cocaine, Nicotine, Neurotransmitters, and Anilines in Aqueous Solution. J Phys Chem B 111:10599–10605CrossRefGoogle Scholar
  79. 79.
    Król M, Wrona M, Page CS, Bates PA (2006) Macroscopic pK a Calculations for Fluorescein and Its Derivatives. J Chem Theory Comput 2:1520–1529CrossRefGoogle Scholar
  80. 80.
    Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andres L (1999) Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol Phys 97:859–868CrossRefGoogle Scholar
  81. 81.
    Dreuw A, Head-Gordon M (2004) Failure of Time-Dependent Density Functional Theory for long-range charge-transfer excited states:  The zincbacteriochlorin–bacteriochlorin and bacteriochlorophyll − spheroidene complexes. J Am Chem Soc 126:4007–4016CrossRefGoogle Scholar
  82. 82.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  83. 83.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  84. 84.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110(6158):6169Google Scholar
  85. 85.
    Zhan CG, Bentley J, Chipman DM (1998) Volume polarization in reaction field theory. J Chem Phys 108:177–192CrossRefGoogle Scholar
  86. 86.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335CrossRefGoogle Scholar
  87. 87.
    Mennucci B, Cammi R, Tomasi J (1998) Excited states and solvatochromic shifts within a nonequilibrium solvation approach: A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level. J Chem Phys 109:2798–2807CrossRefGoogle Scholar
  88. 88.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), c/o Dipartimento di ChimicaUniversità di PerugiaPerugiaItaly
  2. 2.Dipartimento di Chimica and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)Università di PerugiaPerugiaItaly

Personalised recommendations