Advertisement

Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies

  • Aude Marjolin
  • Christophe Gourlaouen
  • Carine Clavaguéra
  • Pengyu Y. Ren
  • Johnny C. Wu
  • Nohad Gresh
  • Jean-Pierre Dognon
  • Jean-Philip Piquemal
Regular Article
Part of the following topical collections:
  1. From Quantum Mechanics to Force Fields Collection

Abstract

In this contribution, we focused on the use of polarizable force fields to model the structural, energetic, and thermodynamical properties of lanthanides and actinides in water. In a first part, we chose the particular case of the Th(IV) cation to demonstrate the capabilities of the AMOEBA polarizable force field to reproduce both reference ab initio gas-phase energetics and experimental data including coordination numbers and radial distribution functions. Using such model, we predicted the first polarizable force field estimate of Th(IV) solvation free energy, which accounts for −1,638 kcal/mol. In addition, we proposed in a second part of this work a full extension of the SIBFA (Sum of Interaction Between Fragments Ab initio computed) polarizable potential to lanthanides (La(III) and Lu(III)) and to actinides (Th(IV)) in water. We demonstrate its capabilities to reproduce all ab initio contributions as extracted from energy decomposition analysis computations, including many-body charge transfer and discussed its applicability to extended molecular dynamics and its parametrization on high-level post-Hartree–Fock data.

Keywords

Lanthanides Actinides Energy decomposition analysis Polarizable force field Charge transfer Hydration free energy 

Notes

Acknowledgments

Two of the authors, C. G. and J.-P. D., thank the direction of simulation and experimental tools of the CEA nuclear energy division CEA/DEN/RBPCH for financial support. This work was granted access to the HPC resources of [CCRT/CINES/IDRIS] under the allocation x2011086146 made by GENCI (Grand Equipement National de Calcul Intensif).

Supplementary material

214_2012_1198_MOESM1_ESM.docx (986 kb)
Supplementary material 1 (DOCX 985 kb)

References

  1. 1.
    Merbach AE, Toth E (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, ChichesterGoogle Scholar
  2. 2.
    Nicholas LK, Long NJ (2006) Chem Soc Rev 35:557CrossRefGoogle Scholar
  3. 3.
    Moore EG, Samuel APS, Raymond KN (2009) Acc Chem Res 42:542CrossRefGoogle Scholar
  4. 4.
    Hou ZM, Wakatsuki Y (2002) Coord Chem Rev 231:1CrossRefGoogle Scholar
  5. 5.
    Silva R, Nitsche H (1995) Radiochim Acta 70:377Google Scholar
  6. 6.
    Grenthe I, Fuger J, Konings R, Lemire R, Muller A, Nguyen-Trung C, Wanner H (1992) In: Wanner H, Forest I (eds) Chemical thermodynamics of Uranium. North-Holland, AmsterdamGoogle Scholar
  7. 7.
    Nash KL, Madic C, Mathur JN (2006) Actinide separation science and technology. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements. Springer, DordrechtGoogle Scholar
  8. 8.
    Clavaguéra C, Calvo F, Dognon J-P (2006) J Chem Phys 124:074505CrossRefGoogle Scholar
  9. 9.
    Clavaguéra C, Sansot E, Calvo F, Dognon J-P (2006) J Phys Chem B 110:12848CrossRefGoogle Scholar
  10. 10.
    Clavaguéra C, Pollet R, Soudan JM, Brenner V, Dognon J-P (2005) J Phys Chem B 109:7614CrossRefGoogle Scholar
  11. 11.
    Hagberg D, Karlström G, Roos BJ, Gagliardi L (2005) J Am Chem Soc 127:14250CrossRefGoogle Scholar
  12. 12.
    Hagberg D, Bednarz E, Edelstein NM, Gagliardi L (2007) J Am Chem Soc 129:14136CrossRefGoogle Scholar
  13. 13.
    Villa A, Hess B, Saint-Martin H (2009) J Phys Chem B 113:7270CrossRefGoogle Scholar
  14. 14.
    Duvail M, Vitorge P, Spezia R (2009) J Chem Phys 130:104501CrossRefGoogle Scholar
  15. 15.
    Beuchat C, Hagberg D, Spezia R, Gagliardi L (2010) J Phys Chem B 114:15590CrossRefGoogle Scholar
  16. 16.
    Galbis E, Hernández-Cobos J, den Auwer C, Le Naour C, Guillaumont D, Simoni E, Pappalardo RR, Sánchez ME (2010) Angew Chem Int Ed 49:3811CrossRefGoogle Scholar
  17. 17.
    Réal F, Trumm M, Vallet V, Schimmelpfennig B, Masella M, Flament J-P (2010) J Phys Chem B 114:15913CrossRefGoogle Scholar
  18. 18.
    Duvail M, Spezia R, Vitorge P (2008) Chem Phys Chem 9:693CrossRefGoogle Scholar
  19. 19.
    Duvail M, Martelli F, Vitorge P, Spezia R (2011) J Chem Phys 135:044503CrossRefGoogle Scholar
  20. 20.
    Kowall Th, Foglia F, Helm K, Merbach AE (1995) J Am Chem Soc 117:13790CrossRefGoogle Scholar
  21. 21.
    D’Angelo P, Zitolo A, Migliorati V, Chillemi G, Duvail M, Vitorge P, Abadie S, Spezzia R (2011) Inorg Chem 50:4572CrossRefGoogle Scholar
  22. 22.
    Helm L, Merbach AE (2005) Chem Rev 105:1923CrossRefGoogle Scholar
  23. 23.
    Clavaguéra-Sarrio C, Brenner V, Hoyau S, Marsden CJ, Millié P, Dognon J-P (2003) J Phys Chem B107:3051Google Scholar
  24. 24.
    Engkvist O, Åstrand PO, Karlström G (2000) Chem Rev 100:4087CrossRefGoogle Scholar
  25. 25.
    Ren P, Ponder JW (2003) J Phys Chem B 107:5933CrossRefGoogle Scholar
  26. 26.
    Shi Y, Wu C, Ponder JW, Ren P (2011) J Comput Chem 32:967CrossRefGoogle Scholar
  27. 27.
    Wu J, Piquemal J-P, Chaudret R, Reinhardt P, Ren P (2010) J Chem Theory Comput 6:2059CrossRefGoogle Scholar
  28. 28.
    Piquemal J-P, Perera L, Cisneros GA, Ren P, Pedersen LG, Darden TA (2006) J Chem Phys 125:054511CrossRefGoogle Scholar
  29. 29.
    Jiao D, King C, Grossfield A, Darden TA, Ren P (2006) J Phys Chem B 110:18553CrossRefGoogle Scholar
  30. 30.
    Grossfield A, Ren P, Ponder JW (2003) J Am Chem Soc 125:15671CrossRefGoogle Scholar
  31. 31.
    Gresh N, Cisneros GA, Darden TA, Piquemal J-P (2007) J Chem Theory Comput 3:1960CrossRefGoogle Scholar
  32. 32.
    Piquemal J-P, Williams-Hubbard B, Fey N, Deeth RJ, Gresh N, Giessner-Prettre C (2003) J Comput Chem 24:1963CrossRefGoogle Scholar
  33. 33.
    Gresh N, Piquemal J-P, Krauss M (2005) J Comput Chem 26:1113CrossRefGoogle Scholar
  34. 34.
    Roux C, Gresh N, Perera L, Piquemal J-P, Salmon L (2007) J Comput Chem 28:938CrossRefGoogle Scholar
  35. 35.
    Jenkins LMM, Hara T, Durell SR, Hayashi R, Inman JK, Piquemal J-P, Gresh N, Appella E (2007) J Am Chem Soc 129:11067CrossRefGoogle Scholar
  36. 36.
    Gourlaouen C, Clavaguéra C, Piquemal J-P, Dognon J-P (2012) submittedGoogle Scholar
  37. 37.
    Simah D, Hartke B, Werner H-J (1999) J Chem Phys 111:4523CrossRefGoogle Scholar
  38. 38.
    Werner HJ, Knowles PJ with contributions from Almlof J, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Lindh R, Lloyd AW, Meyer W, Mura ME, Nicklass A, Peterson K, Pitzer R, Pulay P, Rauhut G, Schutz M, Stoll H, Stone AJ, Taylor PR, Thorsteinsson T (2008) Molpro, version 2008.1. University of Stuttgart and Birmingham, Germany and Great BritainGoogle Scholar
  39. 39.
    Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139CrossRefGoogle Scholar
  40. 40.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  41. 41.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09. Gaussian Inc., Wallingford, CTGoogle Scholar
  42. 42.
    Bagus PS, Hermann K, Bauschlicher CW Jr (1984) J Chem Phys 81:1966CrossRefGoogle Scholar
  43. 43.
    Piquemal J-P, Marquez A, Parisel O, Giessner-Prettre C (2005) J Comput Chem 26:1052CrossRefGoogle Scholar
  44. 44.
    Dupuis M, Marquez A, Davidson ER HONDO95.3, Quantum Chemistry Program Exchange (QCPE). Indiana University, Bloomington, IN 47405Google Scholar
  45. 45.
    Stevens WJ, Fink W (1987) Chem Phys Lett 139:15–22CrossRefGoogle Scholar
  46. 46.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  47. 47.
    Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325CrossRefGoogle Scholar
  48. 48.
    Cisneros GA, Darden TA, Gresh N, Reinhardt P, Parisel P, Pilmé J, Piquemal J-P (2009) In: York DM, Lee T-S (eds) Multi-scale quantum models for biocatalysis: modern techniques and applications, for the book series: challenges and advances in computational chemistry and physics. Springer, Berlin, pp 137–172Google Scholar
  49. 49.
    Vigné-Maeder F, Claverie P (1988) J Chem Phys 88:4934CrossRefGoogle Scholar
  50. 50.
    Piquemal J-P, Gresh N, Giessner-Prettre C (2003) J Phys Chem A 107:10353CrossRefGoogle Scholar
  51. 51.
    Piquemal J-P, Chevreau H, Gresh N (2007) J Chem Theory Comput 3:824CrossRefGoogle Scholar
  52. 52.
    Garmer DR, Stevens WJ (1989) J Chem Phys 93:8263CrossRefGoogle Scholar
  53. 53.
    Chaudret R, Gresh N, Parisel O, Piquemal J-P (2011) J Comput Chem 7:618CrossRefGoogle Scholar
  54. 54.
    Tholé BT (1981) Chem Phys 59:341CrossRefGoogle Scholar
  55. 55.
    Halgren TA (1992) J Am Chem Soc 114:7827CrossRefGoogle Scholar
  56. 56.
    Réal F, Vallet V, Clavaguéra C, Dognon JP (2008) Phys Rev A 78:052502CrossRefGoogle Scholar
  57. 57.
    Nose S (1984) J Chem Phys 81:511–519CrossRefGoogle Scholar
  58. 58.
    Hoover WG (1985) Phys Rev A 31:1695CrossRefGoogle Scholar
  59. 59.
    Beeman D (1976) J Comp Phys 20:130CrossRefGoogle Scholar
  60. 60.
    Ponder JW (2009) TINKER: software tools for molecular design, version 6.2. Washington University School of Medicine, Saint LouisGoogle Scholar
  61. 61.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee L, Pedersen LG (1995) J Chem Phys 101:8577CrossRefGoogle Scholar
  62. 62.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684CrossRefGoogle Scholar
  63. 63.
    Wilson RE, Skanthakumar S, Burns PC, Soderholm L (2007) Angew Chem 119:8189CrossRefGoogle Scholar
  64. 64.
    Torapava N, Persson I, Eriksson L, Lundberg D (2009) Inorg Chem 48:11712CrossRefGoogle Scholar
  65. 65.
    Farkas I, Grenthe IJ (2000) Phys Chem A 104:1201CrossRefGoogle Scholar
  66. 66.
    Bennett CH (1976) J Comput Phys 22:245CrossRefGoogle Scholar
  67. 67.
    David FH, Vokhmin V (2003) New J Chem 27:1627CrossRefGoogle Scholar
  68. 68.
    Marcus YA (1994) Biophys Chem 51:111CrossRefGoogle Scholar
  69. 69.
    Devereux M, van Severen M-C, Parisel O, Piquemal J-P, Gresh N (2011) J Chem Theory Comput 7:138CrossRefGoogle Scholar
  70. 70.
    Piquemal J-P, Cisneros GA, Reinhardt P, Gresh N, Darden TA (2006) J Chem Phys 124:104101CrossRefGoogle Scholar
  71. 71.
    Chaudret R, Gresh N, Darden TA, Parisel O, Cisneros GA, Piquemal J-P (2011) J Chem Phys 2012 (in press)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Aude Marjolin
    • 1
    • 2
  • Christophe Gourlaouen
    • 1
  • Carine Clavaguéra
    • 3
  • Pengyu Y. Ren
    • 4
  • Johnny C. Wu
    • 4
  • Nohad Gresh
    • 5
  • Jean-Pierre Dognon
    • 1
  • Jean-Philip Piquemal
    • 2
  1. 1.Laboratoire de Chimie de Coordination des Eléments-f, CEA, CNRS UMR 3299Gif-sur Yvette CedexFrance
  2. 2.Laboratoire de Chimie Théorique, UMPC, CNRS UMR 7616Paris Cedex 05France
  3. 3.Laboratoire des Mécanismes Réactionnels, Département de ChimieEcole Polytechnique, CNRSPalaiseau CedexFrance
  4. 4.Department of Biomedical EngineeringUniversity of Texas at AustinAustinUSA
  5. 5.Laboratoire de Chimie et Biochimie Pharmacochimiques et Toxicologiques, UMR 8601 CNRS, UFR Biomédicale, Université Paris DescartesParis Cedex 06France

Personalised recommendations