Impact of DFT functionals on the predicted magnesium–DNA interaction: an ONIOM study

  • José P. Cerón-Carrasco
  • Alberto Requena
  • Denis JacqueminEmail author
Regular Article
Part of the following topical collections:
  1. Barone Festschrift Collection


We investigate the descriptions of several density functional theory functionals in modeling the interactions between DNA and magnesium, the divalent cation with the largest intracellular concentration. Precisely, the metal-induced proton transfer (PT) in the guanine-cytosine base pairs is analyzed within an hybrid two-layers QM/QM approach (ONIOM) by combining several functionals: BP86, B3LYP, B97-D, ωB97x-D and M06-2X, as well as the MP2 approach. The aqueous environment is simulated through, on the one hand, explicit solvent molecules present in the first hydration shell and, on the other hand, the well-known polarizable continuum model for the effects of solvation beyond this first shell. Calculations with all methods indicate that the Mg2+ cation coordination to DNA promotes a single PT reaction from the guanine to the cytosine base, characterized by a low back-reaction barrier. M06-2X and ωB97x-D functionals provide consistent results for the simulation of PT reactions. These methods can be combined with B97-D functional in ONIOM partition for the description of the stacking effects.


DNA Magnesium Tautomerism Density functional calculations ONIOM 



J.P.C.C. acknowledges the Région des Pays de la Loire and the fellowship provided by the Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia, within its Postdoctoral Research Staff Training Program. D.J. is indebted to the Région des Pays de la Loire for financial support in the framework of a recrutement sur poste stratégique. The work was partially supported by the Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia under Project 08735/PI/08, and by the Ministerio de Educación y Ciencia of Spain under Projects CTQ2007-66528 and CONSOLIDER CSD2009-00038. This research used resources of (1) the CCIPL (Centre de Calcul Intensif des Pays de Loire) and (2) the GENCI-CINES/IDRIS (Grant C201108547).


  1. 1.
    Santoro F, Barone V, Improta R (2007) Proc Natl Acad Sci USA 104:9931–9936CrossRefGoogle Scholar
  2. 2.
    Improta R, Barone V (2008) Theor Chem Acc 120:491–497CrossRefGoogle Scholar
  3. 3.
    Improta R, Santoro F, Barone V, Lami A (2009) J Phys Chem A 113:15346–15354CrossRefGoogle Scholar
  4. 4.
    Santoro F, Barone V, Improta R (2009) J Am Chem Soc 131:15232–15245CrossRefGoogle Scholar
  5. 5.
    Santoro F, Barone V, Lami A, Improta R (2010) Phys Chem Chem Phys 12:4934–4948CrossRefGoogle Scholar
  6. 6.
    Improta R, Scalmani G, Barone V (2000) Int J Mass Spectrom 201:321–336CrossRefGoogle Scholar
  7. 7.
    Xerri B, Morell C, Grand A, Gadet J, Cimino P, Barone V (2006) Org Biomol Chem 4:3986–3992CrossRefGoogle Scholar
  8. 8.
    Labet V, Morell C, Gran A, Cadet J, Cimino P, Barone V (2008) Org Biomol Chem 6:3300–3305CrossRefGoogle Scholar
  9. 9.
    Müller J (2010) Metallomics 2:318–327CrossRefGoogle Scholar
  10. 10.
    Hanna R, Doudna JA (2000) Curr Opin Chem Biol 4:166–170CrossRefGoogle Scholar
  11. 11.
    Serebrov V, Clarke RJ, Gross HJ, Kisselev L (2001) Biochemistry 40:6688–6698CrossRefGoogle Scholar
  12. 12.
    Anastassopoulou J (2003) J Mol Struct 651(653):19–26CrossRefGoogle Scholar
  13. 13.
    Aich P, Dasgupta D (1995) Biochemistry 34:1376–1385CrossRefGoogle Scholar
  14. 14.
    Huang HW, Li D, Cowan JA (1995) Biochimie 77:729–738CrossRefGoogle Scholar
  15. 15.
    Keniry MA, Owen EA, Shafer RH (2000) Biopolymers 54:104–114CrossRefGoogle Scholar
  16. 16.
    Sreedhara A, Cowan JA (2002) Biometals 15:221–223CrossRefGoogle Scholar
  17. 17.
    Chen SY, Lin TH (2005) J Phys Chem B 109:9764–9772CrossRefGoogle Scholar
  18. 18.
    Barceló F, Ortiz-Lombardía M, Martorell M, Oliver M, Méndez C, Salas JA, Portugal J (2010) Biochemistry 49:10543–10552CrossRefGoogle Scholar
  19. 19.
    Rude RK, Singer FR (1981) Annu Rev Med 32:245–259CrossRefGoogle Scholar
  20. 20.
    Chiu TK, Dickerson RE (2000) J Mol Biol 301:915–945CrossRefGoogle Scholar
  21. 21.
    Egli M (2002) Chem Biol 9:277–286CrossRefGoogle Scholar
  22. 22.
    Anastassopoulou J, Theophanides T (2002) Crit Rev Oncol Hematol 42:79–91CrossRefGoogle Scholar
  23. 23.
    Bregadze VG, Gelagutashvili ES, Tsakadze KJ, Melikishvili SZ (2008) Chem Biodiv 5:1980–1989CrossRefGoogle Scholar
  24. 24.
    Buckin VA, Tran H, Morozov V, Marky LA (1996) J Am Chem Soc 118:7033–7039CrossRefGoogle Scholar
  25. 25.
    Kankia BI, Marky LA (1999) J Phys Chem B 103:8759–8767CrossRefGoogle Scholar
  26. 26.
    Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ (2006) Nature 441:1167–1171CrossRefGoogle Scholar
  27. 27.
    Every AE, Russu IM (2008) J Phys Chem B 112:7689–7695CrossRefGoogle Scholar
  28. 28.
    Ruan C, Rodgers MT (2009) J Am Chem Soc 131:10918–10928CrossRefGoogle Scholar
  29. 29.
    Russo N, Toscano M, Grand A (2001) J Am Chem Soc 123:10272–10279CrossRefGoogle Scholar
  30. 30.
    Russo N, Toscano M, Grand A (2001) J Phys Chem B 105:4735–4741CrossRefGoogle Scholar
  31. 31.
    Petrov AS, Lamm G, Pack GR (2002) J Phys Chem B 106:3294–3300CrossRefGoogle Scholar
  32. 32.
    Burda JV, Šponer J, Hrabáková J, Zeizinger M, Leszczynski J (2003) J Phys Chem B 107:5349–5356CrossRefGoogle Scholar
  33. 33.
    Burda J, Shukla MK, Leszczynski J (2005) J Mol Model 11:362–369CrossRefGoogle Scholar
  34. 34.
    Šponer J, Lankas F (eds) (2006) . Computational Studies of RNA and DNA. Springer, Berlin, pp 411–432Google Scholar
  35. 35.
    Michalkova A, Kosenkov D, Gorb L, Leszczynski J (2008) J Phys Chem B 112:8624–8633CrossRefGoogle Scholar
  36. 36.
    Noguera M, Bertrán J, Sodupe M (2008) J Phys Chem B 112:4817–4825CrossRefGoogle Scholar
  37. 37.
    Noy A, Soteras I, Luque FJ, Orozco M (2009) Phys Chem Chem Phys 11:10596–10607CrossRefGoogle Scholar
  38. 38.
    Šponer J, Sabat M, Burda JV, Leszczynski J, Hobza P (1999) J Phys Chem B 103:2528–2534CrossRefGoogle Scholar
  39. 39.
    Muñoz J, Šponer J, Hobza P, Orozco M, Luque FJ (2001) J Phys Chem B 105:6051–6060CrossRefGoogle Scholar
  40. 40.
    Florián J, Leszczyński J (1996) J Am Chem Soc 118:3010–3017CrossRefGoogle Scholar
  41. 41.
    Guallar V, Douhal A, Moreno M, Lluch JM (1999) J Phys Chem A 103:6251–6256CrossRefGoogle Scholar
  42. 42.
    Dannenberg JJ, Tomasz M (2000) J Am Chem Soc 122:2062–2068CrossRefGoogle Scholar
  43. 43.
    Golo VL, Volkov YS (2003) Int J Mod Phys C 14:133–156CrossRefGoogle Scholar
  44. 44.
    Gorb L, Podolyan Y, Dziekonski P, Sokalski WA, Leszczyński J (2004) J Am Chem Soc 126:10119–10129CrossRefGoogle Scholar
  45. 45.
    Gervasio FL, Laio A, Iannuzzi M, Parrinello M (2004) Chem Eur J 10:4846–4852CrossRefGoogle Scholar
  46. 46.
    Perun S, Sobolewski AL, Domcke W (2006) J Phys Chem A 110:9031–9038CrossRefGoogle Scholar
  47. 47.
    Herrera B, Toro-Labbe A (2007) J Phys Chem A 111:5921–5926CrossRefGoogle Scholar
  48. 48.
    Villani G (2010) J Phys Chem B 114:9653–9662CrossRefGoogle Scholar
  49. 49.
    Pérez A, Tuckerman ME, Hjalmarson HP, von Lilienfeld OA (2010) J Am Chem Soc 132:11510–11515CrossRefGoogle Scholar
  50. 50.
    Dedíková P, Neogrády P, Urban M (2011) J Phys Chem A 115:2350–2358CrossRefGoogle Scholar
  51. 51.
    Basch H, Krauss M, Stevens WJ (1985) J Am Chem Soc 107:7267–7271CrossRefGoogle Scholar
  52. 52.
    Schröder G, Lippert B, Sabat M, Lock CJL, Faggiani R, Song B, Sigel H (1995) J Chem Soc Dalton Trans 23:3767–3775CrossRefGoogle Scholar
  53. 53.
    Song B, Zhao J, Griesser R, Meiser C, Sigel H, Lippert B (1999) Chem Eur J 5:2374–2387CrossRefGoogle Scholar
  54. 54.
    Šponer J, Šponer JE, Gorb L, Leszczynski J, Lippert B (1999) J Phys Chem A 103:11406–11413CrossRefGoogle Scholar
  55. 55.
    Noguera M, Bertran J, Sodupe M (2004) J Phys Chem A 108:333–341CrossRefGoogle Scholar
  56. 56.
    Matsui T, Shigeta Y, Hirao K (2006) Chem Phys Lett 423:331–334CrossRefGoogle Scholar
  57. 57.
    Matsui T, Shigeta Y, Hirao K (2007) J Phys Chem B 111:1176–1181CrossRefGoogle Scholar
  58. 58.
    Šponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, Hobza P (2000) J Phys Chem B 104:7535–7544CrossRefGoogle Scholar
  59. 59.
    Cerón-Carrasco JP, Zúñiga J, Requena A, Perpète EA, Michaux C, Jacquemin D (2011) Phys Chem Chem Phys 13:14585–14589CrossRefGoogle Scholar
  60. 60.
    Gil A, Branchadell V, Bertran J, Oliva A (2009) J Phys Chem B 113:4907–4914CrossRefGoogle Scholar
  61. 61.
    Cauët E, Liévin J (2009) J Phys Chem A 113:9881–9890CrossRefGoogle Scholar
  62. 62.
    Cauët E, Valiev M, Weare JH (2010) J Phys Chem B 114:5886–5894CrossRefGoogle Scholar
  63. 63.
    Acosta-Silva C, Branchadell V, Bertran J, Oliva A (2010) J Phys Chem B 114:10217–10227CrossRefGoogle Scholar
  64. 64.
    Chen HY, Kao CL, Hsu SCN (2009) J Am Chem Soc 131:15930–15938CrossRefGoogle Scholar
  65. 65.
    Chen HY, Yeh SW, Hsu SCN, Kao CL, Dong TY (2011) Phys Chem Chem Phys 13:2674–2681CrossRefGoogle Scholar
  66. 66.
    Šponer J, Burda JV, Sabat M, Leszczyński J, Hobza P (1998) J Phys Chem A 102:5951–5957CrossRefGoogle Scholar
  67. 67.
    Cerón-Carrasco JP, Requena A, Zúñiga J, Michaux C, Perpète EA, Jacquemin D (2009) J Phys Chem A 113:10549–10556CrossRefGoogle Scholar
  68. 68.
    Solt I, Simon I, Császár AG, Fuxreiter M (2007) J Phys Chem B 111:6272–6279CrossRefGoogle Scholar
  69. 69.
    Schneider B, Berman HM (1995) Biophys J 69:2661–2669CrossRefGoogle Scholar
  70. 70.
    Auffinger P, Westhof E (2000) J Mol Biol 300:1113–1131CrossRefGoogle Scholar
  71. 71.
    Makarov V, Pettitt B, Feig M (2002) Acc Chem Res 35:376–384CrossRefGoogle Scholar
  72. 72.
    Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (Theochem) 462:1–21CrossRefGoogle Scholar
  73. 73.
    Gaussian 09, Revision B01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc, Wallingford CT, 2010Google Scholar
  74. 74.
    Šponer J, Riley KE, Hobza P (2008) Phys Chem Chem Phys 10:2595–2610CrossRefGoogle Scholar
  75. 75.
    Hobza P, Šponer J (2002) J Am Chem Soc 124:11802–11808CrossRefGoogle Scholar
  76. 76.
    Zhao Y, Truhlar DG (2005) Phys Chem Chem Phys 7:2701–2705CrossRefGoogle Scholar
  77. 77.
    van der Wijst T, Fonseca-Guerra C, Swart M, Bickelhaupt F (2006) Chem Phys Lett 426:415–421CrossRefGoogle Scholar
  78. 78.
    Grimme S (2004) J Comput Chem 25:1463–1473Google Scholar
  79. 79.
    Riley KE, Vondrášek J, Hobza P (2007) Phys Chem Chem Phys 9:5555–5560CrossRefGoogle Scholar
  80. 80.
    Noguera M, Ríos-Font R, Rodríguez-Santiago L, Solans-Monfort X, Oliva A, Bertran J, Sodupe M (2009) Theor Chem Acc 123:105–111CrossRefGoogle Scholar
  81. 81.
    Antony J, Brüske B, Grimme S (2009) Phys Chem Chem Phys 11:8440–8447CrossRefGoogle Scholar
  82. 82.
    Fonseca-Guerra C, van der Wijst T, Poater J, Swart M, Bickelhaupt FM (2010) Theor Chem Acc 125:245–252CrossRefGoogle Scholar
  83. 83.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  84. 84.
    Zhao Y, Schultz NE, Truhlar DG (2008) Acc Chem Res 41:157–167CrossRefGoogle Scholar
  85. 85.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  86. 86.
    Becke A (1986) J Chem Phys 84:4524–4529CrossRefGoogle Scholar
  87. 87.
    Perdew J (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  88. 88.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  89. 89.
    Lee C, Yang W, Parr R (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  90. 90.
    Becke A (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  91. 91.
    Zhao Y, Truhlar DG (2011) Chem Phys Lett 502:1–13CrossRefGoogle Scholar
  92. 92.
    Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  93. 93.
    Valero R, Gomes JRB, Thrular DG, Illas F (2008) J Chem Phys 129:124710CrossRefGoogle Scholar
  94. 94.
    Hobza P, Šponer J, Polasek M (1995) J Am Chem Soc 117:792–798CrossRefGoogle Scholar
  95. 95.
    Šponer J, Leszczyński J, Hobza P (1996) J Phys Chem 100:5590–5596CrossRefGoogle Scholar
  96. 96.
    Jurečka P, Šponer J, Hobza P (2004) J Phys Chem B 108:5466–5471CrossRefGoogle Scholar
  97. 97.
    Šponer J, Jurečka P, Marchan I, Luque FJ, Orozco M, Hobza P (2006) Chem Eur J 12:2854–2865CrossRefGoogle Scholar
  98. 98.
    Alemán C (1999) Chem Phys 244:151–162CrossRefGoogle Scholar
  99. 99.
    Alemán C (2000) Chem Phys 253:13–19CrossRefGoogle Scholar
  100. 100.
    Oliva R, Cavallo L (2009) J Phys Chem B 113:15670–15678CrossRefGoogle Scholar
  101. 101.
    Tomasi J, Bonaccorsi R, Cammi R, del Valle FO (1991) J Mol Struct (THEOCHEM) 234:401–424CrossRefGoogle Scholar
  102. 102.
    Cammi R, Tomasi J (1995) J Comput Chem 16:1449–1458CrossRefGoogle Scholar
  103. 103.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093CrossRefGoogle Scholar
  104. 104.
    Hohenstein EG, Chill ST, Sherrill CD (2008) J Chem Theory Comput 4:1996–2000CrossRefGoogle Scholar
  105. 105.
    Shukla MK, Leszczyński J (2010) Mol Phys 108:3131–3146CrossRefGoogle Scholar
  106. 106.
    Paukku Y, Hill G (2011) J Phys Chem A 115:4804–4810CrossRefGoogle Scholar
  107. 107.
    Kumar A, Sevilla MD (2011) J Phys Chem B 115:4990–5000CrossRefGoogle Scholar
  108. 108.
    Zhao Y, Truhlar DG (2011) J Chem Theory Comput 7:669–676CrossRefGoogle Scholar
  109. 109.
    Dabkowska I, Jurečka P, Hobza P (2005) J Chem Phys 122:204322CrossRefGoogle Scholar
  110. 110.
    Jurečka P, Šponer J, Hobza P (2006) Phys Chem Chem Phys 8:1985–1993CrossRefGoogle Scholar
  111. 111.
    Barone V, Orlandini L, Adamo C (1994) Chem Phys Lett 231:295–300CrossRefGoogle Scholar
  112. 112.
    Barone V, Orlandini L, Adamo C (1995) Int J Quantum Chem 56:697–705CrossRefGoogle Scholar
  113. 113.
    Fonseca-Guerra C, Bickelhaupt F, Snijders J, Baerends E (2000) J Am Chem Soc 122:4117–4128CrossRefGoogle Scholar
  114. 114.
    Fonseca-Guerra C, Bickelhaupt FM (2002) Angew Chem Int Ed 41:2092–2095CrossRefGoogle Scholar
  115. 115.
    Cerón-Carrasco JP, Requena A, Michaux C, Perpète EA, Jacquemin D (2009) J Phys Chem A 113:7892–7898CrossRefGoogle Scholar
  116. 116.
    Cerón-Carrasco JP, Requena A, Michaux C, Perpète EA, Jacquemin D (2009) Chem Phys Lett 484:64–68CrossRefGoogle Scholar
  117. 117.
    Gu J, Wang J, Leszczynski J, Xie Y, Schaefer-III HF (2008) Chem Phys Lett 459:164–166CrossRefGoogle Scholar
  118. 118.
    Řezáč J, Fanfrlík J, Salahub D, Hobza P (2009) J Chem Theory Comput 5:1749–1760CrossRefGoogle Scholar
  119. 119.
    Wigner EZ (1941) Phys Chem 19:203–216Google Scholar
  120. 120.
    Jolibois F, Grand A, Cadet J, Adamo C, Barone V (1999) Chem Phys Lett 301:255–262CrossRefGoogle Scholar
  121. 121.
    Di Labio GA, Johnson ER (2007) J Am Chem Soc 129:6199–6203CrossRefGoogle Scholar
  122. 122.
    Topal MD, Fresco JR (1976) Nature 263:285–289CrossRefGoogle Scholar
  123. 123.
    Skodje RT, Truhlar DG (1981) J Phys Chem 85:624–628CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • José P. Cerón-Carrasco
    • 1
  • Alberto Requena
    • 2
  • Denis Jacquemin
    • 1
    Email author
  1. 1.CEISAM UMR CNRS 6230Université de NantesNantes Cedex 3France
  2. 2.Departamento de Química Física, Facultad de QuímicaUniversidad de MurciaCampus de Espinardo, MurciaSpain

Personalised recommendations