Advertisement

Optimization of the explicit polarization (X-Pol) potential using a hybrid density functional

  • Jaebeom Han
  • Donald G. Truhlar
  • Jiali Gao
Regular Article
Part of the following topical collections:
  1. From Quantum Mechanics to Force Fields Collection

Abstract

The explicit polarization (X-Pol) method is a self-consistent fragment-based electronic structure theory in which molecular orbitals are block-localized within fragments of a cluster, macromolecule, or condensed-phase system. To account for short-range exchange repulsion and long-range dispersion interactions, we have incorporated a pairwise, empirical potential, in the form of Lennard-Jones terms, into the X-Pol effective Hamiltonian. In the present study, the X-Pol potential is constructed using the B3LYP hybrid density functional with the 6-31G(d) basis set to treat interacting fragments, and the Lennard-Jones parameters have been optimized on a dataset consisting of 105 bimolecular complexes. It is shown that the X-Pol potential can be optimized to provide a good description of hydrogen bonding interactions; the root mean square deviation of the computed binding energies from full (i.e., nonfragmental) CCSD(T)/aug-cc-pVDZ results is 0.8 kcal/mol, and the calculated hydrogen bond distances have an average deviation of about 0.1 Å from those obtained by full B3LYP/aug-cc-pVDZ optimizations.

Keywords

Explicit polarization X-Pol Quantum force field 

Notes

Acknowledgments

We thank Dr. Yen-lin Lin for assistance. This work has been supported by the National Institutes of Health (RC1-GM091445 and GM46736) and the National Science Foundation (CHE09-56776 and CHE09–57162).

References

  1. 1.
    Levitt M (2001) Nat Struct Biol 8:392CrossRefGoogle Scholar
  2. 2.
    Jorgensen WL (2007) J Chem Theory Comput 3:1877CrossRefGoogle Scholar
  3. 3.
    Gao J (1996) Acc Chem Res 29:298CrossRefGoogle Scholar
  4. 4.
    Gao J (1997) J Phys Chem B 101:657CrossRefGoogle Scholar
  5. 5.
    Gao J (1998) J Chem Phys 109:2346CrossRefGoogle Scholar
  6. 6.
    Xie W, Gao J (2007) J Chem Theory Comput 3:1890CrossRefGoogle Scholar
  7. 7.
    Xie W, Song L, Truhlar DG, Gao J (2008) J Chem Phys 128:234108/1Google Scholar
  8. 8.
    Song L, Han J, Lin YL, Xie W, Gao J (2009) J Phys Chem A 113:11656CrossRefGoogle Scholar
  9. 9.
    Mo Y, Gao J, Peyerimhoff SD (2000) J Chem Phys 112:5530CrossRefGoogle Scholar
  10. 10.
    Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) J Chem Phys 105:1968CrossRefGoogle Scholar
  11. 11.
    Gordon MS, Slipchenko L, Li H, Jensen JH (2007) Ann Rep Comput Chem 3:177CrossRefGoogle Scholar
  12. 12.
    Gresh N, Cisneros GA, Darden TA, Piquemal J-P (2007) J Chem Theory Comput 3:1960CrossRefGoogle Scholar
  13. 13.
    Gao J, Xia X (1992) Science 258:631CrossRefGoogle Scholar
  14. 14.
    Lin H, Truhlar Donald G (2007) Theor Chem Acc 117:185CrossRefGoogle Scholar
  15. 15.
    Senn HM, Thiel W (2009) Angew Chem Int Ed 48:1198CrossRefGoogle Scholar
  16. 16.
    Isegawa M, Gao J, Truhlar DG (2011) J Chem Phys 135 (in press)Google Scholar
  17. 17.
    Cembran A, Bao P, Wang Y, Song L, Truhlar DG, Gao J (2010) J Chem Theory Comput 6:2469CrossRefGoogle Scholar
  18. 18.
    Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV (2012) Chem Rev 112:632CrossRefGoogle Scholar
  19. 19.
    Zhang DW, Xiang Y, Zhang JZH (2003) J Phys Chem B 107:12039CrossRefGoogle Scholar
  20. 20.
    Xiang Y, Zhang DW, Zhang JZH (2004) J Comput Chem 25:1431CrossRefGoogle Scholar
  21. 21.
    Duan LL, Mei Y, Zhang DW, Zhang QG, Zhang JZH (2010) J Am Chem Soc 132:11159CrossRefGoogle Scholar
  22. 22.
    Tong Y, Mei Y, Li YL, Ji CG, Zhang JZH (2010) J Am Chem Soc 132:5137CrossRefGoogle Scholar
  23. 23.
    Stoll H, Preuss H (1977) Theor Chem Acc 46:12Google Scholar
  24. 24.
    Hankins D, Moskowitz JW, Stillinger FH (1970) J Chem Phys 53:4544CrossRefGoogle Scholar
  25. 25.
    Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Chem Phys Lett 313:701CrossRefGoogle Scholar
  26. 26.
    Fedorov DG, Kitaura K (2007) J Phys Chem A 111:6904CrossRefGoogle Scholar
  27. 27.
    Truhlar DG, Dahlke EE (2007) J Chem Theory Comput 3:1342CrossRefGoogle Scholar
  28. 28.
    Truhlar DG, Dahlke EE, Leverentz HR (2008) J Chem Theory Comput 4:33CrossRefGoogle Scholar
  29. 29.
    Tempkin JOB, Leverentz HR, Wang B, Truhlar DG (2011) J Phys Chem Lett 2:2141CrossRefGoogle Scholar
  30. 30.
    Leverentz HR, Truhlar DG (2009) J Chem Theory Comput 5:1573CrossRefGoogle Scholar
  31. 31.
    Mo Y, Peyerimhoff SD (1998) J Chem Phys 109:1687CrossRefGoogle Scholar
  32. 32.
    Mo Y, Gao J (2000) J Comput Chem 21:1458CrossRefGoogle Scholar
  33. 33.
    Jacobson LD, Herbert JM (2011) J Chem Phys 134:094118CrossRefGoogle Scholar
  34. 34.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev (Washington, DC) 94:1887Google Scholar
  35. 35.
    Misquitta AJ, Podeszwa R, Jeziorski B, Szalewicz K (2005) J Chem Phys 123:214103CrossRefGoogle Scholar
  36. 36.
    Grimme S (2006) J Comput Chem 27:1787CrossRefGoogle Scholar
  37. 37.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  39. 39.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery J, J. A., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA In, Gaussian, Inc, Wallingford, CTGoogle Scholar
  41. 41.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JS (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  42. 42.
    Bryantsev VS, Diallo MS, van Duin ACT, Goddard WAI (2009) J Chem Theory Comput 5:1016CrossRefGoogle Scholar
  43. 43.
    Zhang P, Fiedler L, Leverentz HR, Truhlar DG, Gao JL (2011) J Chem Theory Comput 7:857CrossRefGoogle Scholar
  44. 44.
    Gao J, Xia X, George TF (1993) J Phys Chem 97:9241CrossRefGoogle Scholar
  45. 45.
    Jorgensen WL, Pranata J (1990) J Am Chem Soc 112:2008CrossRefGoogle Scholar
  46. 46.
    Mo Y, Schleyer PvR WuW, Lin M, Zhang Q, Gao J (2003) J Phys Chem A 107:10011CrossRefGoogle Scholar
  47. 47.
    Mo YR, Bao P, Gao JL (2011) Phys Chem Chem Phys 13:6760CrossRefGoogle Scholar
  48. 48.
    Gao J, Garner DS, Jorgensen WL (1986) J Am Chem Soc 108:4784CrossRefGoogle Scholar
  49. 49.
    Gao J (1994) ACS Symp Ser 569:8CrossRefGoogle Scholar
  50. 50.
    Freindorf M, Gao J (1996) J Comput Chem 17:386CrossRefGoogle Scholar
  51. 51.
    Riccardi D, Li G, Cui Q (2004) J Phys Chem B 108:6467CrossRefGoogle Scholar
  52. 52.
    Freindorf M, Shao YH, Furlani TR, Kong J (2005) J Comput Chem 26:1270CrossRefGoogle Scholar
  53. 53.
    Gao J, Cembran A, Mo Y (2010) J Chem Theory Comput 6:2402CrossRefGoogle Scholar
  54. 54.
    Xie W, Orozco M, Truhlar DG, Gao J (2009) J Chem Theory Comput 5:459CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Chemistry and Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations