A relativistic DFT study of magnetic exchange coupling in ketimide bimetallic uranium(IV) complexes
- 223 Downloads
- 14 Citations
Abstract
Magnetic exchange couplings in bis(ketimide) binuclear UIV/UIV complexes [Cp′2UCl]2(μ-ketimide) diuranium(IV) and [(C5H5)2(Cl)An]2(μ-ketimide) (Cp′ = C5Me4Et; ketimide = N=CMe-(C6H4)-MeC=N) have been investigated computationally using relativistic density functional theory (DFT) combined with the broken symmetry (BS) approach. Using the B3LYP hybrid functional, the BS ground state of these UIV/UIV 5f 2–5f 2 complexes has been found of lower energy than the high spin (HS) quintet state, indicating an antiferromagnetic character (estimated coupling constant |J| < 5 cm−1) which has not yet been evidenced unambiguously experimentally. On the contrary, the BP86 GGA functional overestimates greatly the antiferromagnetic character of the complexes (|J| > 100 cm−1). As recently reported for para-bis(imido) [(C5H5)3U]2(μ-imido) uranium(V) complex, spin polarization is mainly responsible for the antiferromagnetic coupling through the π-network orbital pathway within the bis(ketimide) bridge. Furthermore, spin polarization is exalted by the combined roles of the 5f metal orbitals and of the π-conjugated ketimide bridging ligand which permit electronic communication between the two uranium atoms albeit separated by a distance of the order of 10 Å. The MO analysis clarifies which MOs contribute to the antiferromagnetic coupling in the binuclear complexes under consideration and brings to light the 5f orbitals driving contribution.
Keywords
Ketimide biuranium(IV) complexes Magnetic exchange coupling ZORA/B3LYP Broken symmetryNotes
Acknowledgments
Financial support from the Algerian National Administration of Scientific Research NASR-ANDRU (PNR Grant No. 8/u250/4169) is gratefully acknowledged. Computing facilities were provided by IDRIS Computing Centre of CNRS.
References
- 1.Bencini A, Benelli C, Caneschi A, Carlin RL, Dei A, Gatteschi D (1985) J Am Chem Soc 107:8128–8136CrossRefGoogle Scholar
- 2.Benelli C, Gatteschi D (2002) Chem Rev 102:2369–2387CrossRefGoogle Scholar
- 3.Sessoli R, Gatteschi D (2003) Angew Chem Int Ed 42:268–297CrossRefGoogle Scholar
- 4.Long JR (2003) Molecular cluster magnets. In: Yang P (ed) Chemistry of nanostructured materials. World Scientific, Hong Kong, pp 291–315Google Scholar
- 5.Sessoli R, Tsai HL, Schake AR, Wang SY, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) J Am Chem Soc 115:1804–1816CrossRefGoogle Scholar
- 6.Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Nature 365:14–143CrossRefGoogle Scholar
- 7.Osanai K, Okazawa A, Nogami T, Ishida T (2006) J Am Chem Soc 128:14008–14009CrossRefGoogle Scholar
- 8.Atakol O, Boca R, Ercan I, Ercan F, Fuess H, Haase W, Herchel R (2006) Chem Phys Lett 423:192–196CrossRefGoogle Scholar
- 9.Calzado CJ, Clemente-Juan JM, Coronado E, Gaita-Arino A, Suaud N (2008) Inorg Chem 47:5889–5901CrossRefGoogle Scholar
- 10.Kim JI, Kwak HY, Yoon JH, Ryu DW, Yoo IY, Yang N (2009) Ki Cho B, Park JG, Lee H, Hong CS. Inorg Chem 48:2956–2966CrossRefGoogle Scholar
- 11.Andruh M, Costes JP, Diaz C, Gao S (2009) Inorg Chem 48:3342–3359CrossRefGoogle Scholar
- 12.Affronte M, Troiani F, Ghirri A, Carretta S, Santini P, Corradini V, Schuecker R, Muryn C, Timco G, Winpenny RE (2006) Dalton Trans:2810–2817Google Scholar
- 13.Milios CJ, Inglis R, Vinslava A, Bagai R, Wernsdorfer W, Parsons S, Perlepes SP, Christou G, Brechin EK (2007) J Am Chem Soc 129:12505–12511CrossRefGoogle Scholar
- 14.Bogani L, Wernsdorfer W (2008) Nat Mater 7:179–186CrossRefGoogle Scholar
- 15.Adamo C, Barone V, Subra R (2000) Theor Chem Acc 104:207–209Google Scholar
- 16.Barone V, Bencini A, Gatteschi D, Totti F (2002) Chem Eur J 8:5019–5027CrossRefGoogle Scholar
- 17.Barone V, Cacelli I, Ferretti A (2009) J Chem Phys 130:094306–094309CrossRefGoogle Scholar
- 18.Barone V, Bloino J, Biczysko M (2010) Phys Chem Chem Phys 12:1092–1101CrossRefGoogle Scholar
- 19.Pavone M, Biczysko M, Rega N, Barone V (2010) J Phys Chem B 114:11509–11514CrossRefGoogle Scholar
- 20.Ferrando-Soria J, Castellano M, Yuste C, Lloret F, Julve M, Fabelo O, Ruiz-Pérez C, Stiriba SE, Ruiz-García R, Cano J (2010) Inorg Chim Acta 363:1666–1678CrossRefGoogle Scholar
- 21.Labéguerie P, Rohmer MM, Bénard M (2009) J Chin Chem Soc 56:22–25Google Scholar
- 22.Ismayilov RH, Wang WZ, Lee GH, Yeh CY, Hua SA, Song Y, Rohmer MM, Bénard M, Peng SM (2011) Angew Chem Int Ed 50:2045–2048CrossRefGoogle Scholar
- 23.Gillon B, Mathonire C, Ruiz E, Alvarez S, Cousson A, Rajendiran TM, Kahn O (2002) J Am Chem Soc 124:14433–14441CrossRefGoogle Scholar
- 24.Ciofini I, Daul CA (2003) Coord Chem Rev 238–239:187–209CrossRefGoogle Scholar
- 25.Costuas K, Valenzuela ML, Vega A, Moreno Y, Pena O, Spodine E, Saillard JY, Diaz C (2002) Inorg Chim Acta 329:129–134CrossRefGoogle Scholar
- 26.Kortus J (2007) C R Chimie 10:65–67CrossRefGoogle Scholar
- 27.Castro I, Calatayud ML, Sletten J, Lloret F, Julve M (1997) Dalton Trans:811–818Google Scholar
- 28.Fink K, Fink R, Staemmler V (1994) Inorg Chem 33:6219–6229CrossRefGoogle Scholar
- 29.Bencini A, Costes JP, Dahan F, Dupuis A, Garcia-Tojal J, Gatteschi D, Totti F (2004) Inorg Chim Acta 357:2150–2156CrossRefGoogle Scholar
- 30.Albonico C, Bencini A (1988) Inorg Chem 27:1934–1940CrossRefGoogle Scholar
- 31.Korzeniak T, Desplanches C, Podgajny R, Giménez-Saiz C, Stadnicka K, Rams M, Sieklucka B (2009) Inorg Chem 48:2865–2872CrossRefGoogle Scholar
- 32.Ruiz E, Cano J, Alvarez S, Alemany P (1999) J Comput Chem 20:1391–1400CrossRefGoogle Scholar
- 33.Ruiz E, Rodríguez-Fortea A, Cano J, Alvarez S, Alemany P (2003) J Comput Chem 24:982–989CrossRefGoogle Scholar
- 34.Ruiz E, Rodriguez-Fortea A, Tercero J, Cauchy T, Massobrio CJ (2005) Chem Phys 123:074102–074110Google Scholar
- 35.Nunzi F, Ruiz E, Cano J, Alvarez S (2007) J Phys Chem C 111:618–621CrossRefGoogle Scholar
- 36.Ruiz E, Cauchy T, Cano J, Costa R, Tercero J, Alvarez S (2008) J Am Chem Soc 130:7420–7426CrossRefGoogle Scholar
- 37.Noh EAA, Zhang J (2006) Chem Phys 330:82–89CrossRefGoogle Scholar
- 38.Noh EAA, Zhang J (2008) J Mol Struct THEOCHEM 867:33–38CrossRefGoogle Scholar
- 39.Noh EAA, Zhang J (2009) J Mol Struct THEOCHEM 896:54–62CrossRefGoogle Scholar
- 40.Yan F, Chen Z (2000) J Phys Chem A 104:6295–6300CrossRefGoogle Scholar
- 41.Adamo C, Barone V, Bencini A, Totti F, Ciofini I (1999) Inorg Chem 38:1996–2004CrossRefGoogle Scholar
- 42.Adamo C, Barone V, Bencini A, Broer R, Filatov M, Harrison NM, Illas F, Malrieu JP (2006) Moreira IdPR. J Chem Phys 124:107101–107103CrossRefGoogle Scholar
- 43.Atanasov M, Comba P, Daul CA (2006) J Phys Chem A 110:13332–13340CrossRefGoogle Scholar
- 44.Atanasov M, Comba P, Daul CA (2008) Inorg Chem 47:2449–2463CrossRefGoogle Scholar
- 45.Atanasov M, Comba P, Hausberg S, Martin B (2009) Coord Chem Rev 253:2306–2314CrossRefGoogle Scholar
- 46.Comba P, Hausberg S, Martin B (2009) J Phys Chem A 113:6751–6755CrossRefGoogle Scholar
- 47.Kahn O (1993) Molecular Magnetism. VCH, New YorkGoogle Scholar
- 48.Moreira IdPR, Costa R, Filatov M, Illas F (2007) J Chem Theory Comput 3:764–774CrossRefGoogle Scholar
- 49.Bencini A (2008) Inorg Chim Acta 361:3820–3831CrossRefGoogle Scholar
- 50.Neese F (2009) Coord Chem Rev 253:526–563CrossRefGoogle Scholar
- 51.Cramer CJ (2009) Truhlar D G. Phys Chem Chem Phys 11:10757–10816CrossRefGoogle Scholar
- 52.Onofrio N, Mouesca JM (2011) Inorg Chem 50:5577–5586CrossRefGoogle Scholar
- 53.Zhekova H, Seth M, Ziegler T (2011) J Chem Theory Comput 7:1858–1866CrossRefGoogle Scholar
- 54.Peralta JE, Melo JI (2010) J Chem Theory Comput 6:1894–1899CrossRefGoogle Scholar
- 55.Roy LE, Hughbanks T (2006) J Am Chem Soc 128:568–575CrossRefGoogle Scholar
- 56.Noodleman LJ (1981) J Chem Phys 74:5737–5743CrossRefGoogle Scholar
- 57.Noodleman LJ, Davidson ER (1986) Chem Phys 109:131–143CrossRefGoogle Scholar
- 58.Noodleman LJ, Peng CY, Case DA, Mouesca JM (1995) Coord Chem Rev 144:199–244CrossRefGoogle Scholar
- 59.Ephritikhine M (2006) Dalton Trans:2501–2516Google Scholar
- 60.Lukens WW, Walter MD (2010) Inorg Chem 49:4458–4465CrossRefGoogle Scholar
- 61.Minasian SG, Krinsky JL, Rinehart JD, Copping R, Tyliszczak T, Janousch M, Shuh DK, Arnold J (2009) J Am Chem Soc 131:13767–13783CrossRefGoogle Scholar
- 62.Rinehart JD, Harris TD, Kozimor SA, Bartlett BM, Long JR (2009) Inorg Chem 48:3382–3395CrossRefGoogle Scholar
- 63.Rosen RK, Andersen RA, Edelstein NM (1990) J Am Chem Soc 112:4588–4590CrossRefGoogle Scholar
- 64.Diaconescu PL, Arnold PL, Baker TA, Mindiola DJ (2000) Cummins C C. J Am Chem Soc 122:6108–6109CrossRefGoogle Scholar
- 65.Fox AR, Bart SC, Meyer K, Cummins CC (2008) Nature 455:341–349CrossRefGoogle Scholar
- 66.Jilek RE, Spencer LP, Kuiper DL, Scott BL, Williams UJ, Kikkawa JM, Schelter EJ, Boncella JM (2011) Inorg Chem 50:4235–4237CrossRefGoogle Scholar
- 67.Roussel P, Errington W, Kaltsoyannis N, Scott P (2001) J Organomet Chem 635:69–74CrossRefGoogle Scholar
- 68.Cloke FGN, Green JC, Kaltsoyannis N (2004) Organometallics 23:832–835CrossRefGoogle Scholar
- 69.Gaunt AJ, Reilly SD, Enriquez AE, Scott BL, Ibers JA, Sekar P, Ingram KIM, Kaltsoyannis N, Neu MP (2008) Inorg Chem 47:29–41CrossRefGoogle Scholar
- 70.Evans WJ, Montalvo E, Kozimor SA, Miller KA (2008) J Am Chem Soc 130:12258–12259CrossRefGoogle Scholar
- 71.Kozimor SA, Bartlett BM, Rinehart JD, Long JR (2007) J Am Chem Soc 129:10672–10674CrossRefGoogle Scholar
- 72.Monreal MJ, Carver CT, Diaconescu PL (2007) Inorg Chem 46:7226–7228CrossRefGoogle Scholar
- 73.Rajaraman G, Totti F, Bencini A, Caneschi A, Sessoli R, Gatteschi D (2009) Dalton Trans 3153–3161Google Scholar
- 74.Schelter EJ, Veauthier JM, Thompson JD, Scott BL, John KD, Morris DE, Kiplinger JL (2006) J Am Chem Soc 128:2198–2199CrossRefGoogle Scholar
- 75.Schelter EJ, Veauthier JM, Graves CR, John KD, Scott BL, Thompson JD, Pool-Davis-Tournear JA, Morris DE, Kiplinger JL (2008) Chem Eur J 14:7782–7790CrossRefGoogle Scholar
- 76.Veauthier JM, Schelter EJ, Carlson CN, Scott BL, Da Re RE, Thompson JD, Kiplinger JL, Morris DE, John KD (2008) Inorg Chem 47:5841–5849CrossRefGoogle Scholar
- 77.Spencer LP, Schelter EJ, Yang P, Gdula RL, Scott BL, Thompson JD, Kiplinger JL, Batista ER, Boncella JM (2009) Angew Chem Int Ed 48:3795–3798CrossRefGoogle Scholar
- 78.Newell BS, Rapp AK, Shores MP (2010) Inorg Chem 49:1595–1606CrossRefGoogle Scholar
- 79.Berthet JC, Ephritikhine M (1998) Coord Chem Rev 83:178–180Google Scholar
- 80.Borgne TL, Lance M, Nierlich M, Ephritikhine M (2000) J Organomet Chem 598:313–317CrossRefGoogle Scholar
- 81.Le Borgne T, Rivière E, Marrot J, Thuéry P, Girerd JJ, Ephritikhine M (2002) Chem Eur J 8:773–783CrossRefGoogle Scholar
- 82.Salmon L, Thuéry P, Rivière E, Girerd JJ, Ephritikhine M (2003) Dalton Trans:2872–2880Google Scholar
- 83.Salmon L, Thuéry P, Rivière E, Ephritikhine M (2006) Inorg Chem 45:83–93CrossRefGoogle Scholar
- 84.Diaconescu PL, Cummins CC (2002) J Am Chem Soc 124:7660–7661CrossRefGoogle Scholar
- 85.Evans WJ, Kozimor SA, Ziller JW, Kaltsoyannis N (2004) J Am Chem Soc 126:14533–14547CrossRefGoogle Scholar
- 86.Monreal MJ, Diaconescu PL (2008) Organometallics 27:1702–1706CrossRefGoogle Scholar
- 87.Nocton G, Horeglad P, Pécaut J, Mazzanti M (2008) J Am Chem Soc 130:16633–16645CrossRefGoogle Scholar
- 88.Schelter EJ, Wu R, Scott BL, Thompson JD, Morris DE, Kiplinger JL (2008) Angew Chem Int Ed 47:2993–2996CrossRefGoogle Scholar
- 89.Mills DP, Moro F, McMaster J, van Slageren J, Lewis W, Blake AJ, Liddle ST (2011) Nature Chemistry 3:454–460Google Scholar
- 90.Meskaldji S, Belkhiri A, Belkhiri L, Boucekkine A, Ephritikhine M (2011) C R Chimie (in press)Google Scholar
- 91.Caballol R, Castell O, Illas F, Moreira IP, Malrieu JP (1997) J Phys Chem A 101:7860–7866CrossRefGoogle Scholar
- 92.Figgis BN, Hitchman MA (2000) Ligand field theory and its applications. Wiley, LondonGoogle Scholar
- 93.Fouqueau A, Casida ME, Daku LML, Hauser A, Neese F (2005) J Chem Phys 122:044110–044123CrossRefGoogle Scholar
- 94.Mitani M, Mori H, Takano Y, Yamaki D, Yoshioka Y, Yamaguchi K (2000) J Chem Phys 113:4035–4051CrossRefGoogle Scholar
- 95.Takano Y, Kitagawa Y, Onishi T, Yoshioka Y, Yamaguchi K, Koga N, Iwamura H (2002) J Am Chem Soc 124:450–461CrossRefGoogle Scholar
- 96.Onishi T, Yamaki D, Yamaguchi K, Takano Y (2003) J Chem Phys 118:9747–9761CrossRefGoogle Scholar
- 97.Shoji M, Koizumi K, Kitagawa Y, Kawakami T, Yamanaka S, Okumura M, Yamaguchi K (2006) Chem Phys Lett 432:343–347CrossRefGoogle Scholar
- 98.Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
- 99.Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
- 100.ADF2010.02, SCM; Theoretical chemistry, Vrije University: Amsterdam, The Netherlands. http://www.scm.com
- 101.van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610CrossRefGoogle Scholar
- 102.van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792CrossRefGoogle Scholar
- 103.van Lenthe E, Ehlers A, Baerends EJ (1999) J Chem Phys 110:8943–8953CrossRefGoogle Scholar
- 104.van Lenthe E, Snijders JG, Baerends EJ (1996) J Chem Phys 105:6505–6516CrossRefGoogle Scholar
- 105.Elkechai A, Belkhiri L, Amarouche M, Clappe C, Boucekkine A, Hauchard D, Ephritikhine M (2009) Dalton Trans:2843–2849Google Scholar
- 106.Belkhiri L, Lissillour R, Boucekkine A (2005) J Mol Struct THEOCHEM 757:155–164CrossRefGoogle Scholar
- 107.El Kechai A, Meskaldji S, Boucekkine A, Belkhiri L, Bouchet D, Amarouche M, Clappe C, Hauchard D, Ephritikhine M (2010) J Mol Struct THEOCHEM 954:115–123CrossRefGoogle Scholar
- 108.Meskaldji S, Belkhiri L, Arliguie T, Fourmigué M, Ephritikhine M, Boucekkine A (2010) Inorg Chem 49:3192–3200CrossRefGoogle Scholar
- 109.El Kechai A, Boucekkine A, Belkhiri L, Hauchard D, Clappe C, Ephritikhine M (2010) C R Chimie 13:860–869CrossRefGoogle Scholar
- 110.Schreckenbach G, Shamov GA (2010) Acc Chem Res 43:19–29CrossRefGoogle Scholar
- 111.Xiao H, Li J (2008) Chin J Struct Chem 27:967–974Google Scholar
- 112.García-Hernandez M, Lauterbach C, Krüger S, Matveev A, Rösch N (2002) J Comput Chem 23:834–846CrossRefGoogle Scholar
- 113.Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
- 114.Perdew JP (1986) Phys Rev B 34:7406–7409CrossRefGoogle Scholar
- 115.Graves CR, Yang P, Kozimor SA, Vaughn AE, Clark DL, Conradson SD, Schelter EJ, Scott BL, Thompson JD, Hay PJ, Morris DE, Kiplinger JL (2008) J Am Chem Soc 130:5272–5285CrossRefGoogle Scholar
- 116.Fox AR, Creutz SE, Cummins CC (2010) Dalton Trans 39:6632–6634CrossRefGoogle Scholar
- 117.Cavigliasso G, Kaltsoyannis N (2006) Inorg Chem 45:6828–6839CrossRefGoogle Scholar
- 118.Shamov GA, Schreckenbach G (2005) J Phys Chem A 109:10961–10974CrossRefGoogle Scholar
- 119.Schelter E J, Yang P, Scott BL, Thompson JD, Martin RL, Hay PJ, Morris DE, Kiplinger JL (2007) Inorg Chem 46:7477–7488Google Scholar
- 120.Clark AE, Martin RL, Hay PJ, Green JC, Jantunen KC, Kiplinger JL (2005) J Phys Chem A 109:5481–5491CrossRefGoogle Scholar
- 121.Shannon RD (1976) Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
- 122.Brennan JG, Andersen R (1985) J Am Chem Soc 107:514–516CrossRefGoogle Scholar