Advertisement

Hunting dimers

  • Andrey Yu. Rogachev
  • Paul Jerabek
  • Susanne Klein
  • Gernot FrenkingEmail author
  • Roald HoffmannEmail author
Regular Article
Part of the following topical collections:
  1. Jemmis Festschrift Collection

Abstract

HBCBH and HAlCAlH are related electron-deficient molecules, predicted as local minima on their respective potential energy surfaces. Different views of their electronic structure—as allenes, carbenes, or carbones—prompted two research groups to a friendly competition exploring the predilection of these small molecules to dimerize. Many such dimers emerged from the calculations, some with large enthalpies favoring dimerization. Most interesting among these is an octahedral didehydrocarborane (or alane). The menagerie of (HECEH)2, E = B, Al structures obtained shows great variety in its bonding patterns. That variety is instructive, for it points to the necessity of examining dimerization for any theoretically postulated metastable molecule. We also learn of the continuing utility of simple Lewis structures, the acid–base reactivity of carbones and carbenes, and the dominant role of electron deficiency in borane and alane chemistry.

Keywords

Borylene Alane Bonding analysis Dimerization Quantum chemical calculations 

Notes

Acknowledgments

We are grateful to Cornell for the support of our research by the National Science Foundation through grant CHE-0910623. The work at Marburg was supported by the Deutsche Forschungsgemeinschaft.

Supplementary material

214_2012_1149_MOESM1_ESM.doc (4 mb)
Supplementary material 1 (DOC 4084 kb)

References

  1. 1.
    Hoffmann R, Schleyer P, Schaefer HFS (2008) Angew Chem Int Ed 47:7164CrossRefGoogle Scholar
  2. 2.
    Frenking G (2008) Angew Chem Int Ed 47:7168CrossRefGoogle Scholar
  3. 3.
    Klein S, Frenking G (2010) Angew Chem Int Ed 49:7106CrossRefGoogle Scholar
  4. 4.
    Tonner R, Frenking G (2007) Angew Chem Int Ed 46:8695CrossRefGoogle Scholar
  5. 5.
    Tonner R, Frenking G (2008) Chem Eur J 14:3260CrossRefGoogle Scholar
  6. 6.
    Tonner R, Frenking G (2008) Chem Eur J 14:3273CrossRefGoogle Scholar
  7. 7.
    Frenking G, Tonner R (2009) Pure Appl Chem 81:597CrossRefGoogle Scholar
  8. 8.
    Klein S, Tonner R, Frenking G (2010) Chem Eur J 16:1016Google Scholar
  9. 9.
    Weiß J, Stetzkamp D, Nuber B, Fischer RA, Boehme C, Frenking G (1997) Angew Chem Int Ed 35:70Google Scholar
  10. 10.
    Dyker CA, Lavallo V, Donnadieu B, Bertrand G (2008) Angew Chem Int Ed 47:3206CrossRefGoogle Scholar
  11. 11.
    Fürstner A, Alcarazo M, Goddard R, Lehmann CW (2008) Angew Chem Int Ed 47:3210CrossRefGoogle Scholar
  12. 12.
    Allen WA, Kraka E, Frenking G, J Phys Chem A (to be submitted)Google Scholar
  13. 13.
    Hassanzadeh P, Andrews L (1992) J Am Chem Soc 114:9239CrossRefGoogle Scholar
  14. 14.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  15. 15.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  16. 16.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  17. 17.
    Čížek J (1960) J Chem Phys 45:4256Google Scholar
  18. 18.
    Čížek J (1969) Adv Chem Phys 14:35CrossRefGoogle Scholar
  19. 19.
    Bartlett J (1989) Ann Rev Phys Chem 32:359CrossRefGoogle Scholar
  20. 20.
    Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, FoxDJ (2009). Gaussian, Inc, Wallingford CT USAGoogle Scholar
  21. 21.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar
  22. 22.
    Bader RFW (1990) Atoms in molecules: a quantum theory. University of Oxford Press, OxfordGoogle Scholar
  23. 23.
  24. 24.
    Beginning with “The Electronic Structure of Methylenes”, Hoffmann R, Zeiss GD, Van Dine GW (1968) J Am Chem Soc 90:1485Google Scholar
  25. 25.
    Szabó A, Kovács A, Frenking G (2005) Z Allg Anorg Chem 631:1803CrossRefGoogle Scholar
  26. 26.
    Berndt A (1993) Angew Chem Int Ed 32:985CrossRefGoogle Scholar
  27. 27.
    Fau S, Frenking G (1995) J Mol Struct Theochem 338:117CrossRefGoogle Scholar
  28. 28.
    Menzel M, Steiner D, Winkler HJ, Schweikart D, Mehle S, Fau S, Frenking G, Massa W, Berndt A (1995) Angew Chem 107:368CrossRefGoogle Scholar
  29. 29.
    Menzel M, Steiner D, Winkler HJ, Schweikart D, Mehle S, Fau S, Frenking G, Massa W, Berndt A (1995) Angew Chem Int Ed 34:327CrossRefGoogle Scholar
  30. 30.
    Budzelaar PHM, Krogh-Jespersen K, Clark T, Schleyer PvR (1985) J Am Chem Soc 107:2773CrossRefGoogle Scholar
  31. 31.
    Eberhardt W, Crawford B, Lipscomb WN (1954) J Chem Phys 2:989Google Scholar
  32. 32.
    Longuet-Higgins HC, Roberts MdV (1954) Proc Roy Soc A 224:336Google Scholar
  33. 33.
    Theory of polyhedral molecules. I. Physical factorizations of the secular equation, Hoffmann R, Lipscomb WN (1962) J Chem Phys 36:2179Google Scholar
  34. 34.
    Baudler M, Rockstein K, Oehlert W (1991) Chem Ber 124:1149CrossRefGoogle Scholar
  35. 35.
    Siebert W, Maier CJ, Maier A, Greiwe P, Bayer MJ, Hofmann M, Pritzkow H (2003) Pure Appl Chem 75:1277CrossRefGoogle Scholar
  36. 36.
    Mesbah W, Soleimani M, Kianfar E, Geiseler G, Massa W, Hofmann M, Berndt A (2009) Eur J Inorg Chem 5577Google Scholar
  37. 37.
    Kahlal S, Halet JF, Saillard JY (1991) Inorg Chem 30:2567CrossRefGoogle Scholar
  38. 38.
    Trodi FZ, Lucas G, Bencharif M, Halet JF, Kahlal S, Sailard JY (2007) J Cluster Sci 18:729CrossRefGoogle Scholar
  39. 39.
    Didehydro [B12H12]2− and the corresponding carboranes have been studied by Anoop A, Jayasree EG, Sharma PK, Balusubramanian MM, Pancharatna P, Jemmis ED (to be published)Google Scholar
  40. 40.
    Nicolaides A, Borden WT (1993) J Am Chem Soc 115:11951 and references thereinGoogle Scholar
  41. 41.
    Fehlner TP, Halet JF, Saillard JY (2007) Molecular clusters: a bridge to solid state chemistry. Cambridge University Press, Cambridge UKCrossRefGoogle Scholar
  42. 42.
    Greenwood NN, Earnshaw A (1998) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Biology, Baker LabCornell UniversityIthacaUSA
  2. 2.Fachbereich ChemiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations