Thermodynamic and stereochemical aspects of the polymerizability of glycolide and lactide

  • Carlos AlemánEmail author
  • Oscar Bertran
  • K. N. Houk
  • Anne Buyle Padías
  • Henry K. HallJr.Email author
Regular Article
Part of the following topical collections:
  1. Barone Festschrift Collection


The ring-opening polymerizations of the dilactones glycolide and the S,S- and S,R-stereoisomers of lactide were studied using quantum mechanical methods. The ring strain and the conformational distribution of these cyclic monomers and of the polymers were calculated, and the effect of the medium on the polymerization was predicted, for both bulk and solution. The polymerizability of the three monomers in the gas phase, that is, nonpolar medium, is much greater than that of δ-valerolactone or 1,4-dioxan-2-one. This difference vanishes in the polar medium chloroform, which is attributed to the fact that, while all of these monomers possess polar cis-lactone bonds, the three dilactones possess small dipole moments. The data are combined to give polymerization enthalpy and free energy values. The four stereoregular lactide polymers did not differ significantly in energy. Accordingly, the ability to synthesize any one of these rests on catalyst specificity (“polymer chain-end control”). Although introduction of sterically demanding methyl groups into glycolide is expected to favor coiled conformations and decrease polymerizability, this was not found to be the case. Good agreement of calculated values with experimental data from the literature was achieved.


Lactides Polyesters Quantum mechanics Ring-opening polymerization Stereochemistry Steric effects 



Computer resources were generously provided by the Centre de Supercomputació de Catalunya (CESCA). Financial support from the MICINN and FEDER (MAT2009-09138) and Generalitat de Catalunya (research group 2009 SGR 925 and XRQTC) is gratefully acknowledged. Support for the research of C.A. was received through the prize “ICREA Academia” for excellence in research funded by the Generalitat de Catalunya.


  1. 1.
    Duda A, Penczek S (2001) Mechanisms of aliphatic polyester formation. In: Steintuechel A, Doi Y (eds) Biopolymers, vol 3b. Polyesters II—properties and chemical synthesis, Ch 12. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Chem Rev 104:6147–6176CrossRefGoogle Scholar
  3. 3.
    Zhong Z, Dijkstra PJ, Feijen J (2004) J Biomat Sci Polym Ed 15:929–946CrossRefGoogle Scholar
  4. 4.
    Duda A, Kowalski A, Libiszowski J, Penczek S (2005) Macromol Symp 224:71–84CrossRefGoogle Scholar
  5. 5.
    Cirugomane A, Thomas CM, Carpentier J-F (2007) Pure Appl Chem 79:2013–2030CrossRefGoogle Scholar
  6. 6.
    Kamber NE, Joong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Chem Rev 107:5813–5840CrossRefGoogle Scholar
  7. 7.
    Bourrisou D, Moebs-Sanchez S, Martin-Vaca B (2007) Comptes Rendus Chimie 10:775–794CrossRefGoogle Scholar
  8. 8.
    Platel RH, Hodgson LM, Williams CK (2008) Polym Rev 48:11–63CrossRefGoogle Scholar
  9. 9.
    Chisholm MH, Zhou Z (2008) Stereoselective polymerization of lactide. In: Bough LS, Canich JAM (eds) Stereoselective polymerizations with single-site catalysts. CRC Press, Boca Raton, pp 645–660Google Scholar
  10. 10.
    Stanford MJ, Dove A (2010) Chem Soc Rev 39:486–494CrossRefGoogle Scholar
  11. 11.
    Chisholm MH (2010) Pure Appl Chem 82:1647–1662CrossRefGoogle Scholar
  12. 12.
    Wheaton C, Hayes P, Ireland B (2009) Dalton Trans 4832–4846Google Scholar
  13. 13.
    Houk KN, Jabbari A, Hall HK Jr, Aleman C (2008) J Org Chem 1573:2674–2678CrossRefGoogle Scholar
  14. 14.
    Aleman C, Betran O, Casanovas J, Houk KN, Hall HK Jr (2009) J Org Chem 74:6237–6244CrossRefGoogle Scholar
  15. 15.
    Alemán C, Casanovas J, Zanuy D, Hall HK Jr (2005) J Org Chem 70:2950–2956CrossRefGoogle Scholar
  16. 16.
    Alemán C, Casanovas J, Hall HK Jr (2005) J Org Chem 70:7731–7736CrossRefGoogle Scholar
  17. 17.
    Navarro E, Alemán C, Puiggalí J (1995) J Am Chem Soc 117:7307–7310CrossRefGoogle Scholar
  18. 18.
    Alemán C, Navarro E, Puiggali J (1995) J Org Chem 60:6135–6140CrossRefGoogle Scholar
  19. 19.
    Alemán C, Navarro E, Puiggalí J (1996) J Phys Chem 100:16131–16136CrossRefGoogle Scholar
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain M, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.02. Gaussian Inc., PittsburghGoogle Scholar
  21. 21.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  22. 22.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 23:213–222CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  24. 24.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129CrossRefGoogle Scholar
  25. 25.
    Miertus S, Tomasi J (1982) Chem Phys 65:239–245CrossRefGoogle Scholar
  26. 26.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  27. 27.
    Hawkins GD, Cramer CJ, Truhlar DG (1998) J Phys Chem B 102:3257–3271CrossRefGoogle Scholar
  28. 28.
    Jang YH, Goddard WA III, Noyes KT, Sowers LC, Hwang S, Chung DS (2003) J Phys Chem B 107:344–357CrossRefGoogle Scholar
  29. 29.
    Iribarren JI, Casanovas J, Zanuy D, Alemán C (2004) Chem Phys 302:77–83CrossRefGoogle Scholar
  30. 30.
    Gibson KD, Scheraga HA (1987) J Comput Chem 8:826–834CrossRefGoogle Scholar
  31. 31.
    Vasquez M, Scheraga HA (1988) J Biomol Struct Dyn 5:705–755Google Scholar
  32. 32.
    Vasquez M, Scheraga HA (1988) J Biomol Struct Dyn 5:757–784Google Scholar
  33. 33.
    Chisholm MH, Eilerts NW, Huffman JC, Iyer SS, Pacold M, Phomphrai K (2000) J Am Chem Soc 122:11845–11854CrossRefGoogle Scholar
  34. 34.
    Van Hummel GJ, Harkema S (1982) Acta Cryst B38:1679–1681Google Scholar
  35. 35.
    Li AHT, Chao S (2006) J Chem Phys 125:094312CrossRefGoogle Scholar
  36. 36.
    Johnson ER, DiLabio GA (2006) Chem Phys Lett 419:333–339CrossRefGoogle Scholar
  37. 37.
    Fomine S, Tlenkopatchev M, Martinez S, Fomina L (2002) J Phys Chem A 106:3941–3946CrossRefGoogle Scholar
  38. 38.
    Rodríguez-Ropero F, Casanovas J, Alemán C (2008) J Comput Chem 29:69–78CrossRefGoogle Scholar
  39. 39.
    Katsuyoshi S, Shigetaka K (2005) IEEE J Trans Fundam Mater 125:204–208CrossRefGoogle Scholar
  40. 40.
    Chujo K, Kobayashi H, Suzuki J, Tokuhara S, Tanake M (1967) Makromol Chem 100:262–266CrossRefGoogle Scholar
  41. 41.
    Duda A, Penczek S (1990) Macromolecules 23:1636–1639CrossRefGoogle Scholar
  42. 42.
    Wang Y, Hillmyer MA (2000) Macromolecules 33:7395–7403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Departament d’Enginyeria QuímicaE.T.S. d’Enginyers Industrials de Barcelona, Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Center for Research in Nano-EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Departament d’Enginyeria QuímicaEUETII, Universitat Politècnica de CatalunyaIgualadaSpain
  4. 4.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA
  5. 5.Department of Chemistry and BiochemistryThe University of ArizonaTucsonUSA

Personalised recommendations