Theoretical Chemistry Accounts

, 131:1130 | Cite as

New insights into oxidation properties and band structure of fluorescein dyes from ab initio calculations

Regular Article
  • 297 Downloads
Part of the following topical collections:
  1. Barone Festschrift Collection

Abstract

During recent years, several publications have investigated the electrical bistability of spin cast films of halogenated fluorescein dyes. In the present contribution, we simulate the excited states of single fluorescein dyes with time-dependent density functional theory (TD-DFT) and we analyzed the band structure of the corresponding molecular crystals with DFT. More precisely, the molecules examined are fluorescein, erythrosine B, and rose bengal. We consider the molecular crystals of fluorescein in salt and lactone forms as well as erythrosine B. Rose bengal showed high quantum yield of the triplet state and high electronic affinity. Therefore, the rose bengal has very strong oxidation properties and it is able to form electrically bistable thin oxide layer. The poor crystal order and small bandwidths of fluorescein in salt form and erythrosine B indicated high resistivity for both crystals.

Keywords

Fluoresceins Electrical bistability DFT TD-DFT 

Notes

Acknowledgments

This study was supported by TRIPODE project DM 20160 of the MIUR, Italy.

References

  1. 1.
    Bandyopadhyay A, Pal AJ (2003) J Phys Chem B 107:2531CrossRefGoogle Scholar
  2. 2.
    Bandyopadhyay A, Pal AJ (2004) Appl Phys Lett 84:999CrossRefGoogle Scholar
  3. 3.
    Bandyopadhyay A, Pal AJ (2003) Adv Mater 15:1949CrossRefGoogle Scholar
  4. 4.
    Bandyopadhyay A, Pal AJ (2005) J Phys Chem B 109:6084CrossRefGoogle Scholar
  5. 5.
    Jakobsson FLE, Crispin X, Cölle M, Büchel M, de Leeuw DM, Berggren M (2007) Org Electron 8:559CrossRefGoogle Scholar
  6. 6.
    Kärthauser S, Lüssem B, Weides M (2006) J Appl Phys 100:94504CrossRefGoogle Scholar
  7. 7.
    Fazzi D, Castiglioni C, Negri F (2010) Phys Chem Chem Phys 12:1600CrossRefGoogle Scholar
  8. 8.
    Schmidt PE, Davila C, Esqueda P, Callarotti R (1975) J Solid State Chem 12:293CrossRefGoogle Scholar
  9. 9.
    Ansari AA, Qadeer A (1985) J Phys D 18:911CrossRefGoogle Scholar
  10. 10.
    Shirodkar VS, Chourey AG (1988) J Mater Sci Lett 7:1235CrossRefGoogle Scholar
  11. 11.
    Gloos K, Koppinen PJ, Pekola JP (2003) J Phys Condens Matter 15:1733CrossRefGoogle Scholar
  12. 12.
    Seo S, Lee MJ, Seo DH, Jeoung EJ, Suh DS, Joung YS, Yoo IK, Hwang IR, Kim SH, Byun IS, Kim JS, Choi JS, Park BH (2004) Appl Phys Lett 85:5655CrossRefGoogle Scholar
  13. 13.
    Cölle M, Büchel M, de Leeuw DM (2006) Org Electron 7:305CrossRefGoogle Scholar
  14. 14.
    Yang JJ, Pickett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Nat Nanotechnol 3:429CrossRefGoogle Scholar
  15. 15.
    Yoshida TK, Noshiro H, Sugiyama Y (2007) Appl Phys Lett 91:223510Google Scholar
  16. 16.
    Yang MK, Park JW, Ko TK, Lee JK (2009) Appl Phys Lett 95:042105CrossRefGoogle Scholar
  17. 17.
    Sun B, Liu L, Xu N, Gao B, Wang Y, Han D, Liu X, Han R, Kang J (2009) Jpn J Appl Phys 48:04C061Google Scholar
  18. 18.
    Jacquemine D, Perpete EA, Ciofini I, Adamo C (2009) Acc Chem Res 42:326CrossRefGoogle Scholar
  19. 19.
    Drew A, Head-Gordon M (2005) Chem Rev 105:4009CrossRefGoogle Scholar
  20. 20.
    Barone V, Bloino J, Monti S, Pedone A, Prampolini G (2011) Phys Chem Chem Phys 13:2160CrossRefGoogle Scholar
  21. 21.
    Knudsen KD, Pattison P, Fitch AN, Cernik RJ (1998) Angew Chem Int Ed 37:2340CrossRefGoogle Scholar
  22. 22.
    Yamaguchi K, Tamura Z, Maeda M (1997) Acta Cryst C 53:284CrossRefGoogle Scholar
  23. 23.
    Cody V (1987) Acta Cryst C4(3):705Google Scholar
  24. 24.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) Z Kristallogr 220:567CrossRefGoogle Scholar
  25. 25.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  26. 26.
    Vanderbilt D (1990) Phys Rev B 41:7892Google Scholar
  27. 27.
    Gaussian 03 Revision C.02 (2004) Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian Inc, Wallingford CTGoogle Scholar
  28. 28.
    Adamo C, Barone V (1999) J Chem Phys 110:6158CrossRefGoogle Scholar
  29. 29.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:284CrossRefGoogle Scholar
  30. 30.
    Read AJ, Needs RJ (1991) Phys Rev B 44:13071CrossRefGoogle Scholar
  31. 31.
    Godby RW (1992) Top Appl Phys 69:88Google Scholar
  32. 32.
    Neckers DC (1989) J Photochem Photobiol A Chem 47:1CrossRefGoogle Scholar
  33. 33.
    DeRosa MC, Crutchley RJ (2002) Coord Chem Rev 233–234:351CrossRefGoogle Scholar
  34. 34.
    Redmond RW, Gamlin JN (1999) Photochem Photobiol 70:391Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.STMicroelectronics SrlArzanoItaly
  2. 2.IMAST Scarl P.le E. FermiPorticiItaly

Personalised recommendations