Advertisement

Telluroformaldehyde and its derivatives: structures, ionization potentials, electron affinities and singlet–triplet gaps of the X2CTe and XYCTe (X,Y = H, F, Cl, Br, I and CN) species

  • Naziah B. Jaufeerally
  • Hassan H. Abdallah
  • Ponnadurai Ramasami
  • Henry F. Schaefer III
Regular Article
Part of the following topical collections:
  1. Jemmis Festschrift Collection

Abstract

A systematic investigation of the X2CTe and XYCTe (X,Y = H, F, Cl, Br, I and CN) species is carried out using the second-order Møller–Plesset perturbation theory and density functional theory. The basis sets used for all atoms (except iodine and tellurium) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions and denoted DZP++. The LANL2DZdp ECP and 6-311G(d,p) basis sets are used for tellurium and iodine. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. The ionization potentials (IPad and IPad(ZPVE)), the four different forms of neutral–anion separations (EAad, EAad(ZPVE), VEA and VDE), the singlet–triplet splittings as well as the HOMO–LUMO gaps are predicted. The electronegativity (χ) reactivity descriptor for the halogens (F, Cl, Br and I) and the calculated Mulliken’s electronegativity are used as tools to assess the interrelated properties of these telluroformaldehyde derivatives. The predicted IPad(ZPVE) values with the B3LYP functional range from 7.89 [I2CTe] to 9.16 eV [F(NC)CTe], the EAad(ZPVE) ranges from 1.29 [I2CTe] to 3.34 eV [(NC)2CTe], the singlet–triplet splitting ranges from 0.64 [H(NC)CTe)] to 1.85 eV [F2CTe], and the HOMO–LUMO gap ranges from 2.21 [H(NC)CTe] to 3.42 eV [F2CTe]. The HOMO–LUMO gap is found to be proportional to the singlet–triplet splitting. The results obtained are critically analyzed and discussed. This research is also compared with analogous studies of formaldehyde, thioformaldehyde and selenoformadehyde.

Graphical Abstract

Keywords

Telluroformaldehyde Ionization potential Electron affinity Singlet-Triplet gap HOMO-LUMO gap 

Notes

Acknowledgments

The research has been supported by the Mauritius Tertiary Education Commission (TEC). We acknowledge the use of the facilities at the University of Mauritius, the School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia, and the Center for Computational Quantum Chemistry (CCQC) at the University of Georgia. The authors are grateful to the anonymous reviewers for their help in improving the manuscript. This paper is dedicated to Professor E. D. Jemmis: gentleman, friend and uniquely gifted scholar.

Supplementary material

214_2012_1127_MOESM1_ESM.doc (29 kb)
Supplementary material 1 (DOC 29 kb)
214_2012_1127_MOESM2_ESM.doc (2.5 mb)
Supplementary material 2 (DOC 2575 kb)

References

  1. 1.
    Kwiatkowski JS, Leszczyski J (1994) Mol Phys 81:119–131CrossRefGoogle Scholar
  2. 2.
    Kwiatkowski JS, Leszczyski J (1993) Mol Phys 97:1845–1849Google Scholar
  3. 3.
    Liao HY, Su MD, Chu SY (2000) J Chem Phys 261:275–287Google Scholar
  4. 4.
    Melnick JG, Yurkerwich K, Parkin G (2010) J Am Chem Soc 132:647–655CrossRefGoogle Scholar
  5. 5.
    Butler R, Snelson A (1979) J Phys Chem 83:3243–3248CrossRefGoogle Scholar
  6. 6.
    Rinsland CP, Zander R, Brown LR, Farmer CB, Park JH, Norton RH, Russel JM, Raper OF (1986) Geophys Res Lett 13:769–772CrossRefGoogle Scholar
  7. 7.
    Burrow PD, Michejda AJ (1976) Chem Phys Lett 42:223–236CrossRefGoogle Scholar
  8. 8.
    Gray SK, Miller WH, Yamaguchi Y, Schaefer HF (1981) J Am Chem Soc 103:1900–1904CrossRefGoogle Scholar
  9. 9.
    Ohno K, Okamur K, Yamakado H, Hoshino S, Takami T, Yamauchi M (1995) J Phys Chem 99:14247–14253CrossRefGoogle Scholar
  10. 10.
    Francisco JS, Thoman JW (1999) Chem Phys Lett 300:553–560CrossRefGoogle Scholar
  11. 11.
    Lai C-H, Su M-D, Chu S-Y (2001) J Chem Phys 105:6932–6937CrossRefGoogle Scholar
  12. 12.
    Zhao Y, Francisco JS (1992) Mol Phys 77:1187–1195CrossRefGoogle Scholar
  13. 13.
    Francisco JS, Li Z (1989) J Phys Chem 93:8118–8122CrossRefGoogle Scholar
  14. 14.
    Chestnut DB, Phung CG (1989) J Chem Phys 91:6238–6244CrossRefGoogle Scholar
  15. 15.
    Francisco JS, Ostafin A (1989) Mol Phys 68:255–260CrossRefGoogle Scholar
  16. 16.
    Dixon DA, Farnham WB, Smart BE (1990) Inorg Chem 29:3954–3960CrossRefGoogle Scholar
  17. 17.
    Francisco JS, Zhao Y (1992) J Chem Phys 96:7587–7596CrossRefGoogle Scholar
  18. 18.
    Francisco JS (1992) J Chem Phys 96:7597–7602CrossRefGoogle Scholar
  19. 19.
    Jones A, Lossing FP (1967) J Phys Chem 71:4111–4113CrossRefGoogle Scholar
  20. 20.
    Collins S, Back TG, Rauk A (1993) J Am Chem Soc 107:6589–6592CrossRefGoogle Scholar
  21. 21.
    Staneke PO, Groothuis G, Ingemann S, Nibbering NMM (1995) Int J Mass Spectrom Ion Processes 149:99–110CrossRefGoogle Scholar
  22. 22.
    See-Wing C, Wai-Kee L, Weh-Bih T, Cheuk-Yiu N (1992) J Chem Phys 97:6557–6568CrossRefGoogle Scholar
  23. 23.
    Brunton L, Chabner B, Knollman B (2010) The pharmacological basis of therapeutics. Mc Graw-Hill Professional, New YorkGoogle Scholar
  24. 24.
    Kirschner S, Wei YK, Francis D, Bergman JG (1969) J Med Chem 9:369–372CrossRefGoogle Scholar
  25. 25.
    Careless AJ, Kroto HW, Landersberg BM (1973) J Chem Phys 1:371–375Google Scholar
  26. 26.
    Nakata M, Fukuyama T, Kuchitsu K (1982) J Mol Struct 81:121–129CrossRefGoogle Scholar
  27. 27.
    Duncan JL (1978) Mol Phys 28:1177–1191CrossRefGoogle Scholar
  28. 28.
    Fabricant B, Krieger D, Muenter JS (1977) J Chem Phys 67:1576–1579CrossRefGoogle Scholar
  29. 29.
    Winnerwisser G, Cornet RA, Birss FW, Gordon RM, Ramsay DA, Till SM (1979) J Mol Spectrosc 74:327–330CrossRefGoogle Scholar
  30. 30.
    Brown RD, Godfrey PD, McNaughton D (1985) Chem Phys Lett 118:29–31CrossRefGoogle Scholar
  31. 31.
    Bock H, Aygen S, Rosmus P, Solouki B, Weissflog E (1984) Chem Ber 117:187–202CrossRefGoogle Scholar
  32. 32.
    Jansson E, Norman P, Minaeve B, Agren H (2006) J Phys Chem 124:114016–114020Google Scholar
  33. 33.
    Roper WR, Headford CEL (1983) J Organomet Chem 244:C53–C56CrossRefGoogle Scholar
  34. 34.
    Roper WR, Hill AF, Waters JM, Wright AH (1983) J Am Chem Soc 105:5939–5940CrossRefGoogle Scholar
  35. 35.
    Tokitoh N (1998) Phosphorus Sulphur and Silicon 123:136–138Google Scholar
  36. 36.
    Matsumoto T, Tokitoh N, Okazaki R (1999) J Am Chem Soc 121:8811–8824CrossRefGoogle Scholar
  37. 37.
    Iwamoto T, Sato K, Ishida S, Kabuto C, Kira M (2006) J Am Chem Soc 128:16914–16920CrossRefGoogle Scholar
  38. 38.
    Panda A (2009) Coord Chem Rev 253:1947–1965CrossRefGoogle Scholar
  39. 39.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 Revision C 02. Gaussian Inc, Wallingford CTGoogle Scholar
  41. 41.
    Becke AD (1988) J Chem Phys 38:3098–3100Google Scholar
  42. 42.
    Becke AD (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  43. 43.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  44. 44.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  45. 45.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298CrossRefGoogle Scholar
  46. 46.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  47. 47.
    Glukhovstev MN, Pross A, McGrath MP, Radom L (1995) J Chem Phys 103:1878–1885CrossRefGoogle Scholar
  48. 48.
    Huzinaga S (1965) J Chem Phys 42:1293–1302CrossRefGoogle Scholar
  49. 49.
    Dunning TH, Hay PJ (1977) In Modern Theoretical Chemistry Schaefer H F Ed Plenum New York 3:1–28Google Scholar
  50. 50.
    Huzinaga S (1971) Approximate Atomic Wavefunctions II. University of Alberta, Edmonton AlbertaGoogle Scholar
  51. 51.
    Schafer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  52. 52.
    Lee TJ, Schaefer HF (1985) J Chem Phys 83:1784–1794CrossRefGoogle Scholar
  53. 53.
    Alfred AL (1961) J Inorg Nucl Chem 17:215–221CrossRefGoogle Scholar
  54. 54.
    Glass RS, Gruhn EN, Lichtenberger DL, Lorance E, Pollard RJ, Birringer M, Block E, Deorazio R, He C, Shan Z, Zhang X (2000) J Am Chem Soc 122:5065–5074CrossRefGoogle Scholar
  55. 55.
    Koopmans TA (1933) Physica 1:104–113CrossRefGoogle Scholar
  56. 56.
    Orlova G, Goddard JD (2001) J Org Chem 66:4026–4036CrossRefGoogle Scholar
  57. 57.
    Carpenter JH (1974) J Mol Spectrosc 50:182–201CrossRefGoogle Scholar
  58. 58.
    Buckley TJ, Johnson RD, Huie RE, Zhang Z, Kuo SC, Klemm RB (1995) J Phys Chem 99:4879–4885CrossRefGoogle Scholar
  59. 59.
    Carpenter JH, Rimmer DF (1978) J Chem Soc Faraday Trans 74:466–476Google Scholar
  60. 60.
    Johnson KM, Powis I, Danby C (1979) J Int J Mass Spectrom Ion Phys 32:1–14CrossRefGoogle Scholar
  61. 61.
    Carpenter JH, Smith JG, Thompson IH, Whiffen DH (1977) J Chem Soc Faraday Trans 73:384–393CrossRefGoogle Scholar
  62. 62.
    Thomas RK, Thompson H (1972) Proc R Soc London A 327:13–22CrossRefGoogle Scholar
  63. 63.
    Johnson DR, Powell FX, Kirchoff WH (1971) J Mol Spectrosc 39:136–145CrossRefGoogle Scholar
  64. 64.
    Beers Y, Klein GP, Kirchoff WH, Johnson DR (1972) J Mol Spectrosc 44:533–535CrossRefGoogle Scholar
  65. 65.
    Binnewies M, Grosse J, Le Van D (1985) Phosphorus Sulfur 21:349–366Google Scholar
  66. 66.
    Hildenbrand DL (1973) J Phys Chem 77:897–917CrossRefGoogle Scholar
  67. 67.
    Mines GW, Thomas RK, Thompson H (1973) Proc R Soc London A 333:171–181CrossRefGoogle Scholar
  68. 68.
    Wittel K, Hass A, Bock H (1972) Chem Ber 105:3865–3868CrossRefGoogle Scholar
  69. 69.
    Brown RD, Godfrey PD, McNaughton D, Taylor PR (1986) J Mol Spectrosc 120:292–297CrossRefGoogle Scholar
  70. 70.
    Christen D, Oberhammer H, Zeil W, Haas A, Darmadi A (1980) J Mol Struct 66:203–210CrossRefGoogle Scholar
  71. 71.
    Gleisberg F, Haberl A, Zeil WZ (1975) Naturforsch 30A:549–558Google Scholar
  72. 72.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 117:3801–3807CrossRefGoogle Scholar
  73. 73.
    Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  74. 74.
    Pearson RG (2005) J Chem Sci 117:369–377CrossRefGoogle Scholar
  75. 75.
    Priyakumar UD, Sastry GN (2002) J Org Chem 67:271–281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Computational Chemistry Group, Department of ChemistryUniversity of MauritiusRéduitMauritius
  2. 2.School of Chemical SciencesUniversiti Sains MalaysiaPenangMalaysia
  3. 3.Center for Computational Quantum ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations