Advertisement

Theoretical Chemistry Accounts

, 131:1126 | Cite as

Ab initio classical trajectory calculations of 1,3-cyclobutanedione radical cation dissociation

  • Jia Zhou
  • H. Bernhard SchlegelEmail author
Regular Article
Part of the following topical collections:
  1. Barone Festschrift Collection

Abstract

The dissociation of 1,3-cyclobutanedione radical cation was studied by ab initio direct classical trajectory calculations at the BH&HLYP/6-31G(d) level of theory. A microcanonical ensemble using normal mode sampling was constructed by distributing 10 kcal/mol of excess energy above the transition state for the tautomerization of the keto-enol to the diketo form. A total of 210 trajectories were run starting from this transition state, yielding chemically activated 1,3-cyclobutanedione radical cation. The majority of the trajectories resulted in CH2CO + CH2CO, with the activated CC bond breaking nearly twice as often as the spectator CC bond. The non-statistical behavior is observed because the rate of energy redistribution within the molecule is comparable to or slower than the dissociation rates. In addition to the expected products, dissociation to CH2COCH 2  + CO and formation of a proton-transferred product HCCO· + CH3CO+ were also seen in some of the trajectories.

Graphical abstract

Keywords

Cyclobutanedione Ab initio MD Branching ratio Radical cation 

Notes

Acknowledgments

This work was supported by a grant from the National Science Foundation (CHE0910858). Computer time made available by Computing Grid of Wayne State University is gratefully acknowledged.

References

  1. 1.
    Depke G, Lifshitz C, Schwarz H, Tzidony E (1981) Angew Chem Int Ed 20:792CrossRefGoogle Scholar
  2. 2.
    McAdoo DJ, Hudson CE (1984) Int J Mass Spectrom Ion Processes 59:77CrossRefGoogle Scholar
  3. 3.
    McAdoo DJ, McLafferty FW, Smith JS (1970) J Am Chem Soc 92:6343CrossRefGoogle Scholar
  4. 4.
    Turecek F, Hanus V (1984) Organic Mass Spectrom 19:631CrossRefGoogle Scholar
  5. 5.
    Heinrich N, Louage F, Lifshitz C, Schwarz H (1988) J Am Chem Soc 110:8183CrossRefGoogle Scholar
  6. 6.
    Lifshitz C, Tzidony E (1981) Int J Mass Spectrom Ion Physics 39:181CrossRefGoogle Scholar
  7. 7.
    Lifshitz C (1983) J Phys Chem 87:2304CrossRefGoogle Scholar
  8. 8.
    Lifshitz C, Tzidony E, Terwilliger DT, Hudson CE (1980) Adv Mass Spectrom 8A:859Google Scholar
  9. 9.
    Osterheld TH, Brauman JI (1993) J Am Chem Soc 115:10311CrossRefGoogle Scholar
  10. 10.
    Nummela JA, Carpenter BK (2002) J Am Chem Soc 124:8512CrossRefGoogle Scholar
  11. 11.
    Anand S, Schlegel HB (2004) Phys Chem Chem Phys 6:5166CrossRefGoogle Scholar
  12. 12.
    Zhou J, Schlegel HB (2008) J Phys Chem A 112:13121CrossRefGoogle Scholar
  13. 13.
    Zhou J, Schlegel HB (2009) J Phys Chem A 113:1453CrossRefGoogle Scholar
  14. 14.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2007) Gaussian DV, revision F02. Gaussian Inc, Wallingford, CT, USAGoogle Scholar
  15. 15.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  16. 16.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  17. 17.
    Lee C, Yang W, Parr RD (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  18. 18.
    Moller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  19. 19.
    Montgomery JA, Ochterski JW, Peterson GA (1994) J Chem Phys 101:5900CrossRefGoogle Scholar
  20. 20.
    Larry AC, Paul CR, Krishnan R (2007) J Chem Phys 126:084108CrossRefGoogle Scholar
  21. 21.
    Bakken V, Millam JM, Schlegel HB (1999) J Chem Phys 111:8773CrossRefGoogle Scholar
  22. 22.
    Millam JM, Bakken V, Chen W, Hase WL, Schlegel HB (1999) J Chem Phys 111:3800CrossRefGoogle Scholar
  23. 23.
    Hase WL (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 402 Google Scholar
  24. 24.
    Peslherbe GH, Wang H, Hase WL (1999) Adv Chem Phys 105:171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations