Theoretical Chemistry Accounts

, 131:1125 | Cite as

Computational methodology for chirality determination in the Soai reaction by crystals: γ-glycine

Regular Article

Abstract

The autocatalytic Soai reaction gives abundant evidence of the enantioselective adsorption of organic compounds on a variety of crystals. Computational modelling can provide insight into mechanisms of enantioselectivity. Here, we use a combination of simulated annealing, forcefield, and quantum mechanical methods to examine interactions of pyrimidyl-5-carbaldehyde and 2-methylpyrimidyl-5-carbaldehyde with surfaces of γ-glycine. Using binding energy results, we predict the exposure of the pro-stereogenic S face of pyrimidyl-5-carbaldehyde (~65%) and 2-methylpyrimidyl-5-carbaldehyde (>90%) on the (1 \( \bar{1} \) 0) and (\( \bar{1} \) 1 0) surfaces. The aim is to develop a robust computational methodology that can be applied to understanding crystal-biased asymmetric synthesis.

Keywords

Molecular modelling Soai reaction Crystal surfaces Enantioselectivity 

References

  1. 1.
    Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (1997) Tetrahedron 8:2997–3017CrossRefGoogle Scholar
  2. 2.
    Soai K, Kawasaki T (2008) Top Curr Chem 284:1–33CrossRefGoogle Scholar
  3. 3.
    Soai K, Shibata T, Sato I (2004) Bull Chem Soc Jpn 77:1063–1073CrossRefGoogle Scholar
  4. 4.
    Soai K, Shibata T, Sato I (2000) Acc Chem Res 33:382–390CrossRefGoogle Scholar
  5. 5.
    Soai K, Shibata T, Morioka H, Choji K (1995) Nature 378:767–768CrossRefGoogle Scholar
  6. 6.
    Gehring T, Busch M, Schlageter M, Weingand D (2010) Chirality 22:E173–E182CrossRefGoogle Scholar
  7. 7.
    Kawasaki T, Matsumura Y, Tsutsumi T, Suzuki H, Ito M, Soai K (2009) Science 324:492–495CrossRefGoogle Scholar
  8. 8.
    Singleton DA, Vo LK (2002) J Am Chem Soc 124:10010–10011CrossRefGoogle Scholar
  9. 9.
    Singleton DA, Vo LK (2003) Org Lett 5:4337–4339CrossRefGoogle Scholar
  10. 10.
    Islas JR, Lavabre D, Grevy J-M, Lamoneda RH, Cabrera HR, Micheau J-C, Buhse T (2005) Proc Natl Acad Sci 102:13743–13748CrossRefGoogle Scholar
  11. 11.
    Siegel JS (1998) Chirality 10:24–27Google Scholar
  12. 12.
    Mislow K (2003) Collect Czech Chem Commun 68:849–864CrossRefGoogle Scholar
  13. 13.
    Soai K, Kawasaki T (2006) Chirality 18:469–478CrossRefGoogle Scholar
  14. 14.
    Blackmond DG (2010) Cold Spring Harbor Persp Biol 2:a002147CrossRefGoogle Scholar
  15. 15.
    Lahav M, Weissbuch I (2011) Chem Rev 111:3226–3267Google Scholar
  16. 16.
    Sato I, Kadowaki K, Soai K (2000) Angew Chem Int Ed 39:1510–1512CrossRefGoogle Scholar
  17. 17.
    Soai K, Osanai S, Kadowaki K, Yonekubo S, Shibata T, Sato I (1999) J Am Chem Soc 121:11235–11236CrossRefGoogle Scholar
  18. 18.
    Sato I, Kadowaki K, Urabe H, Jung JH, Ono Y, Shinkai S, Soai K (2003) Tetrahedron Lett 44:721–724CrossRefGoogle Scholar
  19. 19.
    Kawasaki T, Harada Y, Suzuki K, Tobita T, Florini N, Palyi G, Soai K (2008) Org Lett 10:4085–4088CrossRefGoogle Scholar
  20. 20.
    Kawasaki T, Suzuki K, Hatase K, Otsuka M, Koshima H, Soai K (2006) Chem Commun 1869–1871Google Scholar
  21. 21.
    Kawasaki T, Suzuki K, Hakoda Y, Soai K (2008) Angew Chem Int Ed 47:496–499CrossRefGoogle Scholar
  22. 22.
    Soai K, Sato I (2002) Chirality 14:548–554CrossRefGoogle Scholar
  23. 23.
    Kawasaki T, Jo K, Igarashi H, Sato I, Nagano M, Koshima H, Soai K (2005) Angew Chem Int Ed 44:2774–2777CrossRefGoogle Scholar
  24. 24.
    Klankermayer J, Gridnev ID, Brown JM (2007) Chem Commun 30:3151–3153CrossRefGoogle Scholar
  25. 25.
    Ercolani G, Schiaffino L (2011) J Org Chem 76:2619–2626CrossRefGoogle Scholar
  26. 26.
    Schiaffino L, Ercolani G (2010) Chem Eur J 16:3147–3156CrossRefGoogle Scholar
  27. 27.
    Schiaffino L, Ercolani G (2009) Chem Phys Chem 10:2508–2515CrossRefGoogle Scholar
  28. 28.
    Bernal JD (1931) Z Kristallogr 78:363–369Google Scholar
  29. 29.
    Iitaka Y (1961) Acta Crystallogr 14:1–10CrossRefGoogle Scholar
  30. 30.
    He G, Bhamidi V, Wilson SR, Tan RBH, Kenis PJA, Zukoski CF (2006) Cryst Growth Des 6:1746–1749CrossRefGoogle Scholar
  31. 31.
    Rungsimanon T, Yuyama K-I, Sugiyama T, Masuhara H, Tohnai N, Miyata M (2010) J Phys Chem Lett 1:599–603CrossRefGoogle Scholar
  32. 32.
    Weissbuch I, Leisorowitz L, Lahav M (1994) Adv Mater 6:952–956CrossRefGoogle Scholar
  33. 33.
    Dillip GR, Raghavalah R, Mallikarjuna K, Reddy CM, Bhagavannarayana G, Kumar VR, Raju BDP (2011) Spectrochim Acta Part A Mol Biomol Spectr 79:1123–1127CrossRefGoogle Scholar
  34. 34.
    Soai K (2012) private communicationGoogle Scholar
  35. 35.
    Blackmond DG, McMillan CR, Ramdeehul S, Schorm A, Brown JM (2001) J Am Chem Soc 123:10103–10104CrossRefGoogle Scholar
  36. 36.
    Buono FG, Blackmond DG (2003) J Am Chem Soc 125:8978–8979CrossRefGoogle Scholar
  37. 37.
    Blackmond DG (2004) Proc Natl Acad Sci USA 101:5732–5736CrossRefGoogle Scholar
  38. 38.
    Buono FG, Iwamura H, Blackmond DG (2004) Angew Chem Int Ed 43:2099–2103CrossRefGoogle Scholar
  39. 39.
    Klussmann M, Iwamura H, Mathew SP, Wells DH, Pandya U, Armstrong A, Blackmond DG (2006) Nature 441:621–623CrossRefGoogle Scholar
  40. 40.
    Blackmond DG (2006) Tetrahedron 17:584–589CrossRefGoogle Scholar
  41. 41.
    Gridnev ID, Serafimov JM, Quiney H, Brown JM (2003) Org Biomol Chem 1:3811–3819CrossRefGoogle Scholar
  42. 42.
    Gridnev ID, Brown JM (2004) Proc Natl Acad Sci USA 101:5727–5731CrossRefGoogle Scholar
  43. 43.
    Gridnev ID, Serafimov JM, Brown JM (2004) Angew Chem Int Ed 43:4884–4887CrossRefGoogle Scholar
  44. 44.
    Brown MJ, Gridnev I, Klankermayer J (2008) Top Curr Chem 284:35–65CrossRefGoogle Scholar
  45. 45.
    Schiaffino L, Ercolani G (2008) Angew Chem Int Ed 47:6832–6835CrossRefGoogle Scholar
  46. 46.
    Kahr B, Shtukenberg A, Gunn E, Carter DJ, Rohl AL (2011) Cryst Growth Des 11:2070–2073CrossRefGoogle Scholar
  47. 47.
    Accelrys Software Inc (2008) Materials studio release notes, release 4.4. Accelrys Software Inc, San DiegoGoogle Scholar
  48. 48.
    Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys Condens Matter 14:2745–2779CrossRefGoogle Scholar
  49. 49.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  50. 50.
    Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Proteins Struct Funct Genet 4:31–47CrossRefGoogle Scholar
  51. 51.
    Sun H (1988) J Phys Chem B 102:7338–7364CrossRefGoogle Scholar
  52. 52.
    Sun H, Ren P, Fried JR (1988) Comp Theor Polym Sci 8:229–246CrossRefGoogle Scholar
  53. 53.
    Kvick A, Canning WM, Koetzle TF, Williams GJB (1980) Acta Crystallogr Sect B 36:115–120CrossRefGoogle Scholar
  54. 54.
    Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, OxfordCrossRefGoogle Scholar
  55. 55.
    Bijvoet JM, Peerdeman AF, van Bommel AJ (1951) Nature 168:271–272CrossRefGoogle Scholar
  56. 56.
    Flack HD, Bernardinelli G (2008) Chirality 20:681–690CrossRefGoogle Scholar
  57. 57.
    Dittrich B, Strumpel M, Schafer M, Spackman MA, Koritsanszky T (2006) Acta Crystallogr Sect A 62:217–223CrossRefGoogle Scholar
  58. 58.
    Weckert E, Hummer K (1997) Acta Crystallogr Sect A 53:108–143CrossRefGoogle Scholar
  59. 59.
    Kaminksy W, Jin L-W, Powell S, Maezawa I, Claborn K, Branham C, Kahr B (2006) Micron 37:324–338CrossRefGoogle Scholar
  60. 60.
    Clarborn K, Herreros CJ, Isborn C, Zoulay A, Weckert E, Kaminksy W, Kahr B (2006) J Am Chem Soc 128:14746–14747CrossRefGoogle Scholar
  61. 61.
    Weissbuch I, Leiserowitz L, Lahav M (2008) Chirality 20:736–748CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Damien J. Carter
    • 1
    • 3
  • Bart Kahr
    • 2
  • Andrew L. Rohl
    • 1
    • 3
  1. 1.Department of Chemistry, Nanochemistry Research InstituteCurtin UniversityPerthAustralia
  2. 2.Department of ChemistryNew York UniversityNew YorkUSA
  3. 3.iVEC, Technology ParkKensingtonAustralia

Personalised recommendations