Theoretical Chemistry Accounts

, 131:1118 | Cite as

Force reversed method for locating transition states

Regular Article

Abstract

To identify the transition state accurately and efficiently on a high-dimensional potential energy surface is one of the most important topics in kinetic studies on chemical reactions. We present here an algorithm to search the transition state by so-called force reversed method, which only requires a rough reaction direction instead of knowing the initial state and final state. Compared to the nudged elastic band method and the dimer method that require multiple images, the present algorithm with only single image required saves significantly the computational cost. The algorithm was implemented in the first-principle periodic total energy calculation package and applied successfully to several prototype surface processes such as the adsorbate diffusion and dissociation on metal surfaces. The results indicate that the force reversed method is efficient, robust to identify the transition state of various surface processes.

Keywords

Potential energy surface Force reversed method Locating transition states 

Notes

Acknowledgments

Project supported by the National Natural Science Foundation of China (Grant No. 21103165, 20873142, 20733008).

References

  1. 1.
    Hratchian HP, Schlegel HB (2005) In: Dykstra C, Frenking G, Kim K, Scuseria G (eds) Finding minima transition states and following reaction pathways on ab initio potential energy surfaces in theory and application of computational chemistry: the first forty years. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Sun JQ, Ruedenberg K (1994) J Chem Phys 101:2157CrossRefGoogle Scholar
  3. 3.
    Culot P, Dive G, Nguyen VH, Ghuysen JM (1992) Theor Chim Acta 82:189CrossRefGoogle Scholar
  4. 4.
    Cerjan CJ, Miller WH (1981) J Chem Phys 75:2800CrossRefGoogle Scholar
  5. 5.
    Maeda S, Ohno K, Morokuma K (2009) J Phys Chem A 113:1704CrossRefGoogle Scholar
  6. 6.
    Michaelides A, Hu P, Alavi A (1999) J Chem Phys 111:1343CrossRefGoogle Scholar
  7. 7.
    Wang HF, Liu ZP (2008) J Am Chem Soc 130:10996CrossRefGoogle Scholar
  8. 8.
    Bofill JM, Anglada JM (2001) Theor Chem Acc 105:463CrossRefGoogle Scholar
  9. 9.
    Quapp W, Hirsch M, Imig O, Heidrich D (1998) J Computat Chem 19:1087CrossRefGoogle Scholar
  10. 10.
    Liu ZP, Hu P (2004) Top Catal 28:71CrossRefGoogle Scholar
  11. 11.
    Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225CrossRefGoogle Scholar
  12. 12.
    Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J (2003) Comput Mater Sci 28:250CrossRefGoogle Scholar
  13. 13.
    Ren WEW, Vanden-Eijnden E (2002) Phys Rev B 66:052301Google Scholar
  14. 14.
    Jónsson H, Mills G, Jacobsen KW (1998) In: Berne BJ, Ciccotti G, Coker DF (eds) Nudged elastic band method for finding minimum energy paths of transitions in classical and quantum dynamics in condensed phase simulations. World Scientific, SingaporeGoogle Scholar
  15. 15.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901CrossRefGoogle Scholar
  16. 16.
    Henkelman G, Jónsson H (1999) J Chem Phys 111:7010CrossRefGoogle Scholar
  17. 17.
    Henkelman G, Jóhannesson G, Jónsson H (2000) In: Schwartz SD (ed) Methods for finding saddle points and minimum energy paths in progress on theoretical chemistry and physics. Kluwer Academic, New YorkGoogle Scholar
  18. 18.
    Rothman MJ, Lohr LL (1980) Chem Phys Lett 70:405CrossRefGoogle Scholar
  19. 19.
    Bitzek E, Koskinen P, Gähler F, Moseler M, Gumbsch P (2006) Phys Rev Lett 97:170201CrossRefGoogle Scholar
  20. 20.
    Fukui K (1981) Acc Chem Res 14:363CrossRefGoogle Scholar
  21. 21.
    Kresse G, Hafner J (1993) Phys Rev B 48:13115CrossRefGoogle Scholar
  22. 22.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533CrossRefGoogle Scholar
  23. 23.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  24. 24.
    Kresse G, Joubert J (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  25. 25.
    Eckert F, Werner HJ (1998) Theor Chem Acc 100:21CrossRefGoogle Scholar
  26. 26.
    Kästner J, Sherwood P (2008) J Chem Phys 128:014106CrossRefGoogle Scholar
  27. 27.
    Soon A, Todorova M, Delley B, Stampfl C (2006) Phys Rev B 73:165424CrossRefGoogle Scholar
  28. 28.
    Xu Y, Mavrikakis M (2001) Surf Sci 494:131CrossRefGoogle Scholar
  29. 29.
    Habraken FHPM, Kieffer EPh, Bootsma GA (1979) Surf Sci 83:45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Keju Sun
    • 1
    • 2
  • Yonghui Zhao
    • 1
    • 2
  • Hai-Yan Su
    • 1
    • 2
  • Wei-Xue Li
    • 1
    • 2
  1. 1.State Key Laboratory of CatalysisDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
  2. 2.Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Center for Theoretical and Computational ChemistryDalianChina

Personalised recommendations