Advertisement

Binuclear dimethylaminoborole iron carbonyls: iron–iron multiple bonding versus nitrogen → iron dative bonding

  • Jianlin Chen
  • Shaolin Chen
  • Liu Zhong
  • Hao Feng
  • Yaoming Xie
  • R. Bruce King
  • Henry F. SchaeferIII
Regular Article
Part of the following topical collections:
  1. Jemmis Festschrift Collection

Abstract

Theoretical studies show that pendant dimethylamino groups can play a significant role in the chemistry of unsaturated binuclear dimethylaminoborole iron carbonyls. For [C4H4BN(CH3)2]2Fe2(CO)5, the lowest energy structures have single CO bridges and Fe–Fe single bonds of lengths ~2.8 Å. The lowest energy [C4H4BN(CH3)2]2Fe2(CO) n (n = 4, 3) structures have two bridging CO groups with Fe=Fe double bonds of lengths ~2.5 Å for n = 4 and three bridging CO groups with Fe≡Fe triple bonds of lengths ~2.2 Å for n = 3. These structures are similar to structures previously found for the corresponding methylborole derivatives (C4H4BCH3)Fe2(CO) n . However, slightly higher energy [C4H4BN(CH3)2]2Fe2(CO) n (n = 4, 3) structures are found in which dimethylaminoborole is a six-electron donor bridging ligand using electron pairs from the nitrogen atom as well as from the two C=C double bonds. For the more highly unsaturated [C4H4BN(CH3)2]2Fe2(CO) n (n = 2, 1), low energy singlet (n = 2) and triplet (n = 1) perpendicular structures are also found with similar bridging six-electron donor dimethylaminoborole ligands. In addition, highly unsaturated [C4H4BN(CH3)2]2Fe2(CO) n (n = 3, 2, 1) structures are found with agostic hydrogen atoms bridging an iron–carbon bond.

Keywords

Iron Boroles Metal carbonyls Dimethylaminoborole Metal–metal bonding Nitrogen–iron dative bonding Density functional theory 

Notes

Acknowledgments

The research was supported by the Program for New Century Excellent Talents in University (Grand No. NCET-10-0949) China, the Scientific Research Fund of the Key Laboratory of the Education Department of Sichuan Province (Grant No. 10ZX012) and the Research Fund of Key Disciplines of Atomic and Molecular Physics, Xihua University, China, as well as the US National Science Foundation (Grants CHE-0716718, CHE-0749868, CHE-1057466, and CHE-1054286) for the support of this research.

Supplementary material

214_2012_1090_MOESM1_ESM.pdf (784 kb)
Supplementary material 1 (PDF 784 kb)

References

  1. 1.
    Eisch JJ, Hota NK, Kozima S (1969) J Am Chem Soc 91:4575CrossRefGoogle Scholar
  2. 2.
    Eisch JJ, Galle JE, Kozima S (1986) J Am Chem Soc 108:379CrossRefGoogle Scholar
  3. 3.
    Huynh K, Vigneille J, Tilley TD (2009) Angew Chem Int Ed 48:2835CrossRefGoogle Scholar
  4. 4.
    Fan C, Mercier LG, Piers WE, Tuononen HM, Parvez M (2010) J Am Chem Soc 132:9604CrossRefGoogle Scholar
  5. 5.
    Braunschweig H, Fernández I, Frenking G, Kupfer T (1951) Angew Chem Int Ed 2008:47Google Scholar
  6. 6.
    So C-W, Watanabe D, Wakamiya A, Yamaguchi S (2008) Organometallics 27:3496CrossRefGoogle Scholar
  7. 7.
    Herberich GE, Hostalek M, Laven R, Boese R (1990) Angew Chem 102:330CrossRefGoogle Scholar
  8. 8.
    Herberich GE, Boveleth W, Hessner B, Köffer DPJ, Negele M, Saive R (1986) J Organomet Chem 308:153CrossRefGoogle Scholar
  9. 9.
    Herberich GE, Boveleth W, Hessner B, Hostaler M, Köffer DPJ, Negele M (1987) J Organomet Chem 319:311CrossRefGoogle Scholar
  10. 10.
    Herberich GE, Hessner B, Negele M, Howard JAK (1987) J Organomet Chem 336:29CrossRefGoogle Scholar
  11. 11.
    Fischer EO, Jira R (1954) Z Naturforsch 9b:618Google Scholar
  12. 12.
    Piper TS, Cotton FA, Wilkinson G (1955) J Inorg Nucl Chem 1:165CrossRefGoogle Scholar
  13. 13.
    Herrmann WA, Serrano R, Weichmann J (1983) J Organomet Chem 246:C57CrossRefGoogle Scholar
  14. 14.
    Bernal I, Korp JD, Hermann WA, Serrano R (1984) Chem Ber 117:434CrossRefGoogle Scholar
  15. 15.
    Fischler I, Hildenbrand K, von Gustorf EK (1975) Angew Chem 87:35CrossRefGoogle Scholar
  16. 16.
    Herrmann WA, Barnes CE, Serrano R, Koumbouris B (1983) J Organomet Chem 256:C30CrossRefGoogle Scholar
  17. 17.
    Chen J, Chen S, Zhong L, Feng H, Xie Y, King RB (2011) Inorg Chem 50:1351CrossRefGoogle Scholar
  18. 18.
    Ehlers AW, Frenking G (1994) J Am Chem Soc 116:1514CrossRefGoogle Scholar
  19. 19.
    Delley B, Wrinn M, Lüthi HP (1994) J Chem Phys 100:5785CrossRefGoogle Scholar
  20. 20.
    Jonas V, Thiel W (1995) J Phys Chem 102:8474CrossRefGoogle Scholar
  21. 21.
    Niu S, Hall MB (2000) Chem Rev 100:353CrossRefGoogle Scholar
  22. 22.
    Ziegler T, Autschbach J (2005) Chem Rev 105:2695CrossRefGoogle Scholar
  23. 23.
    Bühl M, Kabrede H (2006) J Chem Theory Comput 2:1282CrossRefGoogle Scholar
  24. 24.
    Hayes PG, Beddie C, Hall MB, Waterman R, Tilley TD (2006) J Am Chem Soc 128:428CrossRefGoogle Scholar
  25. 25.
    Waller MP, Bühl M, Geethanakshmi KR, Wang D, Thiel W (2007) Chem Eur J 13:4723CrossRefGoogle Scholar
  26. 26.
    Ye S, Tuttle T, Bill E, Simkhorich L, Gross Z, Thiel W, Neese F (2008) Chem Eur J 14:10839CrossRefGoogle Scholar
  27. 27.
    Bühl M, Reimann C, Pantazis DA, Bredow T, Neese F (2008) J Chem Theory Comput 4:1449CrossRefGoogle Scholar
  28. 28.
    Tonner R, Heydenrych G, Frenking G (2008) J Am Chem Soc 130:8952CrossRefGoogle Scholar
  29. 29.
    Besora M, Carreon-Macedo J-L, Cowan J, George MW, Harvey JN, Portius P, Ronayne KL, Sun X-Z, Towrie M (2009) J Am Chem Soc 131:3583CrossRefGoogle Scholar
  30. 30.
    Seiffert N, Bühl M (2010) J Am Chem Soc 132:8056CrossRefGoogle Scholar
  31. 31.
    McNaughton RL, Roemelt M, Chin JM, Schrock RR, Neese F, Hoffman BM (2010) J Am Chem Soc 132:8645CrossRefGoogle Scholar
  32. 32.
    Herbert DE, Gilroy JB, Staubitz A, Haddow MF, Harvey JN, Manners I (1988) J Am Chem Soc 2010:132Google Scholar
  33. 33.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  34. 34.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  35. 35.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  36. 36.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  37. 37.
    See especially: Furche F, Perdew JP (2006) J Chem Phys 124:044103Google Scholar
  38. 38.
    Wang HY, Xie Y, King RB, Schaefer HF (2005) J Am Chem Soc 127:11646CrossRefGoogle Scholar
  39. 39.
    Wang HY, Xie Y, King RB, Schaefer HF (2006) J Am Chem Soc 128:11376CrossRefGoogle Scholar
  40. 40.
    Dunning TH (1970) J Chem Phys 53:2823CrossRefGoogle Scholar
  41. 41.
    Huzinaga S (1965) J Chem Phys 42:1293CrossRefGoogle Scholar
  42. 42.
    Wachters AJH (1970) J Chem Phys 52:1033CrossRefGoogle Scholar
  43. 43.
    Hood DM, Pitzer RM, Schaefer HF (1979) J Chem Phys 71:705CrossRefGoogle Scholar
  44. 44.
    Silaghi-Dumitrescu I, Bitterwolf TE, King RB (2006) J Am Chem Soc 128:5342CrossRefGoogle Scholar
  45. 45.
    Frisch MJ et al. (2009) Gaussian 09, Revision A.02, Gaussian, Inc., WallingfordGoogle Scholar
  46. 46.
    Papas BN, Schaefer HF (2006) J Mol Struct 768:175Google Scholar
  47. 47.
    Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48CrossRefGoogle Scholar
  48. 48.
    Hepp AF, Blaha JP, Lewis C, Wrighton MS (1984) Organometallics 3:174CrossRefGoogle Scholar
  49. 49.
    Caspar JV, Meyer TJ (1980) J Am Chem Soc 102:7794CrossRefGoogle Scholar
  50. 50.
    Hooker RH, Mahmoud KA, Rest AJ (1983) Chem Commun 1022Google Scholar
  51. 51.
    Sunderlin LS, Wang D, Squires RR (1993) J Am Chem Soc 115:12060CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jianlin Chen
    • 1
  • Shaolin Chen
    • 1
  • Liu Zhong
    • 1
  • Hao Feng
    • 1
  • Yaoming Xie
    • 2
  • R. Bruce King
    • 1
    • 2
  • Henry F. SchaeferIII
    • 2
  1. 1.School of Physics and Chemistry, Research Center for Advanced ComputationXihua UniversityChengduChina
  2. 2.Department of Chemistry and Center for Computational ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations