Theoretical Chemistry Accounts

, 131:1088 | Cite as

Proton-bound homodimers involving second-row atoms

Regular Article
Part of the following topical collections:
  1. Jemmis Festschrift Collection

Abstract

High-level ab initio quantum chemical calculations (G4(MP2)//MP2/6-311+G(2df,p)) have been used to examine homodimers of second-row bases, and to compare the results with those obtained previously for the first-row analogs. The relationship between the binding energies of the dimers and the proton affinities (PAs) of the bases follows the same pattern as that for the first-row systems, with the binding energies initially increasing with increasing proton affinity but subsequently decreasing. This may be attributed to the opposing effects of increased PA on the hydrogen-bond donor and hydrogen-bond acceptor. The binding energies are generally smaller for the second-row dimers than for the corresponding first-row dimers. There is an increased tendency for asymmetrical hydrogen bonds in homodimers of the second-row compared with first-row dimers. This may be attributed to the lower electronegativities of second-row atoms relative to their first-row counterparts, and to the longer internuclear separation between the hydrogen-bonded second-row atoms.

Keywords

Hydrogen bonding Ab initio Homodimers Binding energies Structures 

Notes

Acknowledgments

We gratefully acknowledge the award of an Australian Professorial Fellowship and funding from the ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (to L.R.), and generous allocations of computer time from the National Computational Infrastructure (NCI) National Facility and Intersect Australia Ltd, and from the Ohio Supercomputer Center.

References

  1. 1.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Scheiner S (ed) (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Scheiner S (1997) Molecular interactions: from van der Waals to strongly bound complexes. John Wiley and Sons, ChichesterGoogle Scholar
  4. 4.
    Grabowski SJ (ed) (2006) Hydrogen bonding—new insights. Springer, DordrechtGoogle Scholar
  5. 5.
    Buckingham AD, Del Bene JE, McDowell SAC (2008) Chem Phys Lett 463:1–10CrossRefGoogle Scholar
  6. 6.
    Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Zeegers-Huyskens T (1988) J Mol Struct 177:125–141CrossRefGoogle Scholar
  8. 8.
    Gilli G, Gilli P (2000) J Mol Struct 552:1–15CrossRefGoogle Scholar
  9. 9.
    Humbel S, Hoffmann N, Cote I, Bouquant J (2000) Chem Eur J 6:1592–1600CrossRefGoogle Scholar
  10. 10.
    Humbel S (2002) J Phys Chem A 106:5517–5520CrossRefGoogle Scholar
  11. 11.
    Bian L (2003) J Phys Chem A 107:11517–11524CrossRefGoogle Scholar
  12. 12.
    Mautner M (2005) Chem Rev 105:213–284CrossRefGoogle Scholar
  13. 13.
    Del Bene JE, Elguero J, Alkorta I (2007) J Phys Chem A 111:3416–3422CrossRefGoogle Scholar
  14. 14.
    Hibbert F, Emsley J (1990) Adv Phys Org Chem 26:255–379CrossRefGoogle Scholar
  15. 15.
    Schiøtt B, Iversen BB, Madsen GKH, Bruice TC (1998) Proc Natl Acad Sci USA 95:12799–12802CrossRefGoogle Scholar
  16. 16.
    Overgaard J, Schiøtt B, Larsen FK, Schultz AJ, John C, MacDonald JC, Iversen BB (1999) Angew Chem Int Ed 38:1239–1242CrossRefGoogle Scholar
  17. 17.
    Gilli P, Bertolasi V, Ferretti V, Gilli G (2000) J Am Chem Soc 122:10405–10417CrossRefGoogle Scholar
  18. 18.
    Pauling LC (1960) The nature of the chemical bond. Cornell University Press, New YorkGoogle Scholar
  19. 19.
    Desiraju G, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New YorkGoogle Scholar
  20. 20.
    Marechal Y (2007) The hydrogen bond and the water molecule: the physics and chemistry of water, aqueous and biomedia. Elsevier, AmsterdamGoogle Scholar
  21. 21.
    Chan B, Del Bene JE, Radom L (2007) J Am Chem Soc 129:12197–12199CrossRefGoogle Scholar
  22. 22.
    Chan B, Del Bene JE, Radom L (2009) Mol Phys 107:1095–1105CrossRefGoogle Scholar
  23. 23.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  24. 24.
    Jensen F (2006) Introduction to computational chemistry, 2nd edn. Wiley, ChichesterGoogle Scholar
  25. 25.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E01. Gaussian, Inc., Wallingford CTGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A02. Gaussian, Inc., Wallingford CTGoogle Scholar
  27. 27.
    Swart M, Rösler E, Bickelhaupt FM (2006) J Comput Chem 27:1486–1493CrossRefGoogle Scholar
  28. 28.
    Schwerdtfeger P (2010) The CTCP table of experimental and calculated static dipole polarizabilities for the electronic ground states of the neutral elements. Massey University, Auckland. URL: http://ctcp.massey.ac.nz/dipole-polarizabilities
  29. 29.
    Chan B, Del Bene JE, Elguero J, Radom L (2005) J Phys Chem A 109:5509–5517CrossRefGoogle Scholar
  30. 30.
    Alkorta I, Elguero J, Del Bene JE (2007) J Phys Chem A 111:9924–9930CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and BiotechnologyUniversity of SydneySydneyAustralia
  2. 2.Department of ChemistryYoungstown State UniversityYoungstownUSA

Personalised recommendations