Theoretical Chemistry Accounts

, 131:1084 | Cite as

Electron correlation methods based on the random phase approximation

Regular Article
Part of the following topical collections:
  1. 50th Anniversary Collection

Abstract

In the past decade, the random phase approximation (RPA) has emerged as a promising post-Kohn–Sham method to treat electron correlation in molecules, surfaces, and solids. In this review, we explain how RPA arises naturally as a zero-order approximation from the adiabatic connection and the fluctuation-dissipation theorem in a density functional context. This is contrasted to RPA with exchange (RPAX) in a post-Hartree–Fock context. In both methods, RPA and RPAX, the correlation energy may be expressed as a sum over zero-point energies of harmonic oscillators representing collective electronic excitations, consistent with the physical picture originally proposed by Bohm and Pines. The extra factor 1/2 in the RPAX case is rigorously derived. Approaches beyond RPA are briefly summarized. We also review computational strategies implementing RPA. The combination of auxiliary expansions and imaginary frequency integration methods has lead to recent progress in this field, making RPA calculations affordable for systems with over 100 atoms. Finally, we summarize benchmark applications of RPA to various molecular and solid-state properties, including relative energies of conformers, reaction energies involving weak and covalent interactions, diatomic potential energy curves, ionization potentials and electron affinities, surface adsorption energies, bulk cohesive energies and lattice constants. RPA barrier heights for an extended benchmark set are presented. RPA is an order of magnitude more accurate than semi-local functionals such as B3LYP for non-covalent interactions rivaling the best empirically parametrized methods. Larger but systematic errors are observed for processes that do not conserve the number of electron pairs, such as atomization and ionization.

Keywords

Electronic structure theory Density functional theory Random phase approximation Resolution-of-the-identity (RI) approximation Van-der-Waals forces Thermochemistry 

Supplementary material

214_2011_1084_MOESM1_ESM.pdf (75 kb)
Supplementary material (PDF 75.4 kb)

References

  1. 1.
    Bohm D, Pines D (1951) Phys Rev 82:625Google Scholar
  2. 2.
    Pines D, Bohm D (1952) Phys Rev 85:338Google Scholar
  3. 3.
    Bohm D, Pines D (1953) Phys Rev 92:609Google Scholar
  4. 4.
    Gell-Mann M, Brueckner KA (1957) Phys Rev 106:364Google Scholar
  5. 5.
    McLachlan AD, Ball MA (1964) Rev Mod Phys 36:844Google Scholar
  6. 6.
    Oddershede J (1978) Adv Quant Chem 11:275Google Scholar
  7. 7.
    Szabo A, Ostlund NS (1977) J Chem Phys 67:4351Google Scholar
  8. 8.
    Shibuya T-I, McKoy V (1970) Phys Rev A 2:2208Google Scholar
  9. 9.
    Ostlund N, Karplus M (1971) Chem Phys Lett 11:450Google Scholar
  10. 10.
    Öhrn Y, Linderberg J (1979) Int J Quant Chem 15:343Google Scholar
  11. 11.
    Langreth DC, Perdew JP (1975) Solid State Commun 17:1425Google Scholar
  12. 12.
    Langreth DC, Perdew JP (1977) Phys Rev B 15:2884Google Scholar
  13. 13.
    Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274Google Scholar
  14. 14.
    Callen HB, Welton TA (1951) Phys Rev 83:34Google Scholar
  15. 15.
    Andersson Y, Langreth DC, Lundqvist BI (1996) Phys Rev Lett 76:102Google Scholar
  16. 16.
    Dobson JF, Wang J (1999) Phys Rev Lett 82:2123Google Scholar
  17. 17.
    Dobson J (2006) In: Time-dependent density functional theory, vol. 706. Springer, Berlin, p 443Google Scholar
  18. 18.
    Furche F (2001) Phys Rev B 64:195120Google Scholar
  19. 19.
    Levy M (1979) Proc Natl Acad Sci USA 76:6062Google Scholar
  20. 20.
    Fetter AL, Walecka JD (1971) Quantum theory of many-particle systems, international series in pure and applied physics. MacGraw-Hill, New YorkGoogle Scholar
  21. 21.
    Runge E, Gross EKU (1984) Phys Rev Lett 52:997Google Scholar
  22. 22.
    Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212Google Scholar
  23. 23.
    Casida ME (1995) In: Chong DP (ed) Recent advances in density functional methods, vol. 1 of Recent advances in computational chemistry. World Scientific, Singapore, p 155Google Scholar
  24. 24.
    Furche F (2001) J Chem Phys 114:5982Google Scholar
  25. 25.
    Furche F (2008) J Chem Phys 129:114105Google Scholar
  26. 26.
    Hedin L (1965) Phys Rev 139:A796Google Scholar
  27. 27.
    Toulouse J, Zhu W, Ángyán JG, Savin A (2010) Phys Rev A 82:032502Google Scholar
  28. 28.
    Hellgren M, von Barth U (2007) Phys Rev B 76:075107Google Scholar
  29. 29.
    Onida G, Reining L, Rubio A (2002) Rev Mod Phys 74:601Google Scholar
  30. 30.
    Bechstedt F, Fuchs F, Kresse G (2009) Phys Status Solidi (B) 246:1877Google Scholar
  31. 31.
    Møller C, Plesset MS (1934) Phys Rev 46:618Google Scholar
  32. 32.
    Ball MA, McLachlan AD (1964) Mol Phys 7:501Google Scholar
  33. 33.
    Toulouse J, Gerber IC, Jansen G, Savin A, Ángyán JG (2009) Phys Rev Lett 102:096404Google Scholar
  34. 34.
    Furche T, Van Voorhis T (2005) Chem Phys 122:164106Google Scholar
  35. 35.
    Klopper W, Teale AM, Coriani S, Pedersen TB, Helgaker T (2011) Chem Phys Lett 510:147Google Scholar
  36. 36.
    Jansen G, Liu RF, Ángyán JG (2010) J Chem Phys 133:154106Google Scholar
  37. 37.
    Heßelmann A (2011) J Chem Phys 134:204107Google Scholar
  38. 38.
    Freeman DL (1977) Phys Rev B 15:5512Google Scholar
  39. 39.
    Scuseria GE, Henderson TM, Sorensen DC (2008) J Chem Phys 129:231101Google Scholar
  40. 40.
    Hansen AE, Bouman TD (1979) Mol Phys 37:1713Google Scholar
  41. 41.
    Sanderson EA (1965) Phys Lett 19:141Google Scholar
  42. 42.
    Burke K, Perdew JP, Langreth DC (1994) Phys Rev Lett 73:1283Google Scholar
  43. 43.
    Yan Z, Perdew JP, Kurth S (2000) Phys Rev B 61:16430Google Scholar
  44. 44.
    Ruzsinszky A, Perdew JP, Csonka GI (2010) J Chem Theory Comput 6:127Google Scholar
  45. 45.
    Ruzsinszky A, Perdew JP, Csonka GI (2011) J Chem Phys 134:114110Google Scholar
  46. 46.
    Janesko BG, Henderson TM, Scuseria GE (2009) J Chem Phys 130:081105Google Scholar
  47. 47.
    Zhu W, Toulouse J, Savin A, Ángyán JG (2010) J Chem Phys 132:244108Google Scholar
  48. 48.
    Görling A, Levy M (1993) Phys Rev B 47:13105Google Scholar
  49. 49.
    Ernzerhof M (1996) Chem Phys Lett 263:499Google Scholar
  50. 50.
    Grüneis A, Marsman M, Harl J, Schimka L, Kresse G (2009) J Chem Phys 131:154115Google Scholar
  51. 51.
    Paier J, Janesko BG, Henderson TM, Scuseria GE, Grüneis A, Kresse G (2010) J Chem Phys 132:094103Google Scholar
  52. 52.
    Paier J, Janesko BG, Henderson TM, Scuseria GE, Grüneis A, Kresse G (2010) J Chem Phys 133:179902Google Scholar
  53. 53.
    Henderson TM, Scuseria GE (2010) Mol Phys 108:2511Google Scholar
  54. 54.
    Ren XG, Tkatchenko A, Rinke P, Scheffler M (2011) Phys Rev Lett 106:153003Google Scholar
  55. 55.
    Singwi KS, Tosi MP, Land RH, Sjölander A (1968) Phys Rev 176:589Google Scholar
  56. 56.
    Gross EKU, Kohn W (1990) Adv Quant Chem 21:255Google Scholar
  57. 57.
    Dobson JF, Wang J (2000) Phys Rev B 62:10038Google Scholar
  58. 58.
    Lein M, Gross EKU, Perdew JP (2000) Phys Rev B 61:13431Google Scholar
  59. 59.
    Dobson JF, Wang J, Gould T (2002) Phys Rev B 66:081108Google Scholar
  60. 60.
    Dobson JF (2009) Phys Chem Chem Phys 11:4528Google Scholar
  61. 61.
    Constantin LA, Pitarke JM, Dobson JF, Garcia-Lekue A, Perdew JP (2008) Phys Rev Lett 100:036401Google Scholar
  62. 62.
    Kotani T, Akai H (1998) J Magn Magn Mater 177(181):569Google Scholar
  63. 63.
    Hellgren M, von Barth U (2008) Phys Rev B 78:115107Google Scholar
  64. 64.
    Hirata S, Ivanov S, Grabowski I, Bartlett RJ (2002) J Chem Phys 116:6468Google Scholar
  65. 65.
    Shigeta Y, Hirao K, Hirata S (2006) Phys Rev A 73:010502Google Scholar
  66. 66.
    Heßelmann A, Ipatov A, Görling A (2009) Phys Rev A 80:012507Google Scholar
  67. 67.
    Heßelmann A, Görling A (2010) Mol Phys 108:359Google Scholar
  68. 68.
    Beebe N, Linderberg J (1977) Int J Quant Chem 12:683Google Scholar
  69. 69.
    Friesner RA (1991) Ann Rev Phys Chem 42:341Google Scholar
  70. 70.
    Ko C, Malick DK, Braden DA, Friesner RA, Martínez TJ (2008) J Chem Phys 128:104103Google Scholar
  71. 71.
    Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41Google Scholar
  72. 72.
    Dunlap BI, Connolly JWD, Sabin JRJ (1979) Chem Phys 71:3396Google Scholar
  73. 73.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283Google Scholar
  74. 74.
    Bauernschmitt R, Hser M, Treutler O, Ahlrichs R (1997) Chem Phys Lett 264:573Google Scholar
  75. 75.
    Neese F, Olbrich G (2002) Chem Phys Lett 362:170Google Scholar
  76. 76.
    Rappoport D, Furche F (2005) J Chem Phys 122:064105Google Scholar
  77. 77.
    Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143Google Scholar
  78. 78.
    Weigend F, Häser M (1997) Theor Chim Acta 97:331Google Scholar
  79. 79.
    Eshuis H, Yarkony J, Furche F (2010) J Chem Phys 132:234114Google Scholar
  80. 80.
    Hale N, Higham NJ, Trefethen LN (2008) SIAM J Num Anal 46:2505Google Scholar
  81. 81.
    Boyd JP (1987) J Sci Comput 2:99Google Scholar
  82. 82.
    Dunning J (1989) J Chem Phys 90:1007Google Scholar
  83. 83.
    Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175Google Scholar
  84. 84.
    Tajti A, Szalay PG, Császár AG, Kállay M, Gauss J, Valeev EF, Flowers BA, Vázquez J, Stanton JF (2004) J Chem Phys 121:11599Google Scholar
  85. 85.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297Google Scholar
  86. 86.
    Eshuis H, Furche F (2011) J Phys Chem Lett 2:983Google Scholar
  87. 87.
    Harl J, Kresse G (2008) Phys Rev B 77:045136Google Scholar
  88. 88.
    Fuchs M, Gonze X (2002) Phys Rev B 65:235109Google Scholar
  89. 89.
    Niquet YM, Fuchs M, Gonze X (2003) Phys Rev A 68:032507Google Scholar
  90. 90.
    Ren X, Rinke P, Scheffler M (2009) Phys Rev B 80:045402Google Scholar
  91. 91.
    Bashford D, Chothia C, Lesk AM (1987) J Mol Biol 196:199Google Scholar
  92. 92.
    Dabkowska I, Gonzalez HV, Jurecka P, Hobza P (2005) J Phys Chem A 109:1131Google Scholar
  93. 93.
    Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:1210Google Scholar
  94. 94.
    Grimme S (2006) J Chem Phys 124:034108Google Scholar
  95. 95.
    Kemnitz CR, Mackey JL, Loewen MJ, Hargrove JL, Lewis JL, Hawkins WE, Nielsen AF (2010) Chem Eur J 16:6942Google Scholar
  96. 96.
    Wodrich MD, Jana DF, von Rague Schleyer P, Corminboeuf C (2008) J Phys Chem A 112:11495Google Scholar
  97. 97.
    Grimme S, Djukic J (2010) Inorg Chem 49:2911Google Scholar
  98. 98.
    Sherrill CD (2009) In: Rev Comp Chem, Wiley, New York, pp 1–38Google Scholar
  99. 99.
    Černý J, Hobza P (2007) Phys Chem Chem Phys 9:5291Google Scholar
  100. 100.
    Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397Google Scholar
  101. 101.
    Grimme S (2004) J Comp Chem 25:1463Google Scholar
  102. 102.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401Google Scholar
  103. 103.
    Vydrov OA, Van Voorhis T (2010) Phys Rev A 81:062708Google Scholar
  104. 104.
    Vydrov OA, Van Voorhis T (2009) J Chem Phys 130:104105Google Scholar
  105. 105.
    Langreth D, Lundqvist B, Chakarova-Käck S, Cooper V, Dion M, Hyldgaard P, Kelkkanen A, Kleis J, Kong L, Li S et al (2009) J Phys Cond Matter 21:084203Google Scholar
  106. 106.
    Axilrod BM, Teller E (1943) J Chem Phys 11:299Google Scholar
  107. 107.
    Lu D, Nguyen H, Galli G (2010) J Chem Phys 133:154110Google Scholar
  108. 108.
    Janesko BG, Scuseria GE (2009) J Chem Phys 131:154106Google Scholar
  109. 109.
    Gruzman D, Karton A, Martin JML (2009) J Phys Chem A 113:11974Google Scholar
  110. 110.
    Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670Google Scholar
  111. 111.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157167Google Scholar
  112. 112.
    Zhao Y, Truhlar DG (2011) Chem Phys Lett 502:1Google Scholar
  113. 113.
    Grimme S (2005) J Phys Chem A 109:3067Google Scholar
  114. 114.
    Takatani T, Hohenstein EG, Malagoli M, Marshall MS, Sherrill CD (2010) J Chem Phys 132:144104Google Scholar
  115. 115.
    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8:1985Google Scholar
  116. 116.
    Jiang H, Engel E (2007) J Chem Phys 127:184108Google Scholar
  117. 117.
    Harl J, Schimka L, Kresse G (2010) Phys Rev B 81:115126Google Scholar
  118. 118.
    Vougioukalakis GC, Grubbs RH (2010) Chem Rev 110:1746Google Scholar
  119. 119.
    Sanford MS, Love JA, Grubbs RH (2001) J Am Chem Soc 123:6543Google Scholar
  120. 120.
    Śliwa P, Handzlik J (2010) Chem Phys Lett 493:273Google Scholar
  121. 121.
    Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:324Google Scholar
  122. 122.
    Benitez D, Tkatchouk E, Goddard WA (2009) Organometallics 28:2643Google Scholar
  123. 123.
    Fuchs M, Niquet Y-M, Gonze X, Burke K (2005) J Chem Phys 122:094116Google Scholar
  124. 124.
    Huber KP, Herzberg G (1979) Constants of diatomic molecules, vol. IV of Molecular spectra and molecular structure. Van Nostrand Reinhold, New YorkGoogle Scholar
  125. 125.
    Oglivie JF, Wang FYH (1992) J Mol Struct 273:277Google Scholar
  126. 126.
    Adamo C, Ernzerhof M, Scuseria GE (2000) J Chem Phys 112:2643Google Scholar
  127. 127.
    May K, Dapprich S, Furche F, Unterreiner BV, Ahlrichs R (2000) Phys Chem Chem Phys 2:5084Google Scholar
  128. 128.
    Wheeler SE, Houk KN, vR Schleyer P, Allen WD (2009) J Am Chem Soc 131:2547Google Scholar
  129. 129.
    Goerigk L, Grimme S (2010) J Chem Theory Comput 6:107Google Scholar
  130. 130.
    Lee D, Furche F, Burke K (2010) J Phys Chem Lett 1:2124Google Scholar
  131. 131.
    Lebègue S, Harl J, Gould T, Ángyán JG, Kresse G, Dobson JF (2010) Phys Rev Lett 105:196401Google Scholar
  132. 132.
    Dobson JF, White A, Rubio A (2006) Phys Rev Lett 96:073201Google Scholar
  133. 133.
    Gould T, Simpkins K, Dobson JF (2008) Phys Rev B 77:165134Google Scholar
  134. 134.
    Heßelmann A, Görling A (2011) Mol Phys 109:2473Google Scholar
  135. 135.
    Ángyán JG, Liu R-F, Toulouse J, Jansen G (2011) J Chem Theory Comput 7:3116Google Scholar
  136. 136.
    Toulouse J, Zhu W, Savin A, Jansen G, Ángyán JG (2011) J Chem Phys 135:084119 Google Scholar
  137. 137.
    Toulouse J, Zhu W, Ángyán JG, Savin A (2010) Phys Rev A82:032502Google Scholar
  138. 138.
    Irelan RM, Henderson TM, Scuseria GE (2011) J Chem Phys 135:094105 Google Scholar
  139. 139.
    Lotrich V, Bartlett RJ (2011) J Chem Phys 134:184108 Google Scholar
  140. 140.
    Heßelmann A, Görling A (2011) Phys Rev Lett 106:093001Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Henk Eshuis
    • 1
  • Jefferson E. Bates
    • 1
  • Filipp Furche
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations