Theoretical Chemistry Accounts

, 131:1078 | Cite as

Nanoparticle morphology and aspect ratio effects in Ag/PVDF nanocomposites

  • Christopher K. Rowan
  • Irina PaciEmail author
Regular Article
Part of the following topical collections:
  1. 50th Anniversary Collection


Optical response in silver/polyvinylidene fluoride nanocomposite materials with nonspherical inclusions was examined using direct dipolar interband transitions, from density functional theory. We discuss here the dependence of the optical response of the material on the geometry, crystallographic makeup and end-cap morphology of the metallic inclusions, as well as on their orientation relative to the polarization direction of the applied electromagnetic field. Each periodic unit cell contained a single inclusion and a polymer matrix; thus, the composite behaved as a monodisperse, perfectly oriented material. Overall, the spectral location of the composite excitation spectrum was tied to that of the metallic inclusions and correlated well to quantum confinement models for the direction of polarization: As linear size of the inclusion increased in a given direction, the excitation spectrum of light polarized in that direction was red-shifted. The effect of the polymer matrix was also examined. Coulomb repulsion from matrix energy states led to splitting of nanoparticle-based energy levels, and the matrix conduction band became involved in high-energy transitions. These effects led to extensions of the spectra of nanocomposites with less stable {100}–basal plane inclusions to very low excitation energies. Attenuation or redshifting of nanoparticle peaks with high photon energies was also observed for materials with small linear sizes along the excitation direction. Comparisons with experimental and time-dependent density functional theory results suggest that estimating the complex dielectric constant from interband transition dipole moments, in a time-independent fashion, provides reliable qualitative spectra for these systems.


Metal/polymer nanocomposites Optical response Density functional theory  Inclusion morphology Birefrigent materials 



Funding was provided by the National Science and Engineering Research Council of Canada, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund and the University of Victoria. This research was performed in part using the WestGrid computing resources, which are funded in part by the Canada Foundation for Innovation, Alberta Innovation and Science, BC Advanced Education and the participating research institutions.


  1. 1.
    Nicolais L, Carotenuto G (2005) Metal-polymer nanocomposites. Wiley, New JerseyGoogle Scholar
  2. 2.
    Caseri W (2000) Macromol Rapid Commun 21:705CrossRefGoogle Scholar
  3. 3.
    Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267CrossRefGoogle Scholar
  4. 4.
    Tao A, Sinsermsuksakul P, Yang P (2006) Angew Chem 118:4713CrossRefGoogle Scholar
  5. 5.
    Sun Y, Xia Y (2002) Science 298:2176CrossRefGoogle Scholar
  6. 6.
    Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Science 294:1901CrossRefGoogle Scholar
  7. 7.
    Uznanski P, Bryszewska E (2010) J Mater Sci 45:1547CrossRefGoogle Scholar
  8. 8.
    Sun Y, Yang B, Cai W, Guizhe Z, Zhang Q (2010) Micro Nano Lett 5:162CrossRefGoogle Scholar
  9. 9.
    Deng Z, Mansuipur M, Muscat AJ (2007) J Phys Chem C 113:867CrossRefGoogle Scholar
  10. 10.
    Murphy CJ, Jana NR (2002) Adv Mater 14:80CrossRefGoogle Scholar
  11. 11.
    Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46:4630CrossRefGoogle Scholar
  12. 12.
    Song Y, Elsayed-Ali HE (2010) Appl Surf Sci 256:5961CrossRefGoogle Scholar
  13. 13.
    Zhang J, Coombs N, Kumacheva E (2002) J Am Chem Soc 124:14512CrossRefGoogle Scholar
  14. 14.
    Xu J, Munari A, Dalton E, Matheson A, Razeeb KM (2009) J App Phys 106:124310CrossRefGoogle Scholar
  15. 15.
    Godovsky DY (2000) Device applications of polymer-metal nanocomposites, advances in polymer science, vol 153. Springer, BerlinGoogle Scholar
  16. 16.
    Khlebstov NG (2010) J Nanophotonics 4:041587CrossRefGoogle Scholar
  17. 17.
    Reyes-Esqueda JA, Torres-Torres C, Cheang-Wong JC, Crespo-Sosa A, Rodriguez-Fernandez L, Noguez C, Oliver A (2008) Opt Express 16:710CrossRefGoogle Scholar
  18. 18.
    McFarland AD, Van Duyne RP (2003) Nano Lett 3:1057CrossRefGoogle Scholar
  19. 19.
    Bloemer MJ, Haus JW (1996) J Lightwave Technol 14:1534CrossRefGoogle Scholar
  20. 20.
    Smythe EJ, Dickey MD, Bao J, Whitesides GM, Capasso F (2009) Nano Lett 9:1132CrossRefGoogle Scholar
  21. 21.
    Felidj N, Aubard J, Levi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Phys Rev B 65:075419CrossRefGoogle Scholar
  22. 22.
    Yang Y, Xiong L, Shi J, Nogami M (2006) Nanotechnology 17:2670CrossRefGoogle Scholar
  23. 23.
    Bernabo M, Pucci A, Ramanitra HH, Ruggeri G (2010) Materials 3:1461CrossRefGoogle Scholar
  24. 24.
    Yu P, Huang J, Tang J (2011) Nanoscale Res Lett 6:46Google Scholar
  25. 25.
    Muller-Plathe F (2002) Chem Phys Chem 3:754CrossRefGoogle Scholar
  26. 26.
    Maillard M, Giorgio S, Pileni MP (2002) Adv Mater 14:1084CrossRefGoogle Scholar
  27. 27.
    Tang B, An J, Zheng X, Xu S, Li D, Zhou J, Zhao J, Xu W (2008) J Phys Chem C 112:18361Google Scholar
  28. 28.
    Zhu YC, Geng WT (2008) J Phys Chem C 112:8545CrossRefGoogle Scholar
  29. 29.
    Sun Y, Xia Y (2003) In: Cao G, Xia Y, Braun PV (eds.) Society of photo-optical instrumentation engineers (SPIE) conference series, vol 5224. pp 43–52Google Scholar
  30. 30.
    Kan CX, Zhu JJ, Zhu XG (2008) J Phys D Appl Phys 41:155304CrossRefGoogle Scholar
  31. 31.
    Tang X, Tsuji M, Nishio M, Jiang P (2009) Bull Chem Soc Jpn 82:1304CrossRefGoogle Scholar
  32. 32.
    Gao Y, Song L, Jiang P, Liu LF, Yan XQ, Zhou ZP, Liu DF, Wang JX, Yuan HJ, Zhang ZX, Zhao XW, Dou XY, Zhou WY, Wang G, Xie SS, Chen HY, Li JQ (2005) J Cryst Growth 276:606CrossRefGoogle Scholar
  33. 33.
    Krenn JR, Schider G, Rechberger W, Lamprecht B, Leitner A, Weeber JC (2000) App Phys Lett 77:3379CrossRefGoogle Scholar
  34. 34.
    Wilson O, Wilson GJ, Mulvaney P (2002) Adv Mater 14:1000Google Scholar
  35. 35.
    Evans PR, Hendren WR, Atkinson R, Pollard RJ (2008) Nanotechnology 19:465708CrossRefGoogle Scholar
  36. 36.
    Zhao YP, Chaney SB, Shanmukh S, Dluhy RA (2006) J Phys Chem B 110:3153CrossRefGoogle Scholar
  37. 37.
    Li D, Komarneni S (2010) J Nanosci Nanotechnol 10:8035CrossRefGoogle Scholar
  38. 38.
    Jensen LL, Jensen L (2009) J Phys Chem C 113:15182CrossRefGoogle Scholar
  39. 39.
    Cortie MB, Xu X, Ford MJ (2006) Phys Chem Chem Phys 8:3520CrossRefGoogle Scholar
  40. 40.
    Johnson HE, Aikens CM (2009) J Phys Chem A 113:4445CrossRefGoogle Scholar
  41. 41.
    Rowan CK, Paci I (2011) J Phys Chem C 115:8316CrossRefGoogle Scholar
  42. 42.
    Wiley BJ, Chen Y, McLelland JM, Xiong Y, Li ZY, Ginger D, Xia Y (2007) Nano Lett 7:1032CrossRefGoogle Scholar
  43. 43.
    Qin H, Gao Y, Teng J, Xu H, Wu K, Gao S (2010) Nano Lett 10:2961CrossRefGoogle Scholar
  44. 44.
    Wang YL, Lai MY (2001) J Phys: Condens Matter 13:R589CrossRefGoogle Scholar
  45. 45.
    Jackschath C, Rabin I, Schulze W (1992) Z Phys D At Mol Clusters 22:517CrossRefGoogle Scholar
  46. 46.
    Fedrigo S, Harbich W, Belyaev J, Butter J (1993) Chem Phys Lett 211:166CrossRefGoogle Scholar
  47. 47.
    Chiu YP, Wei CM, Chang CS (2008) Phys Rev B 78:115402CrossRefGoogle Scholar
  48. 48.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  49. 49.
    Wang J, Wang G, Zhao J (2003) Chem Phys Lett 380:716CrossRefGoogle Scholar
  50. 50.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comput 4:435CrossRefGoogle Scholar
  51. 51.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) J Am Chem Soc 114:10024CrossRefGoogle Scholar
  52. 52.
    Chen Y, Shew CY (2003) J Mol Model 9:379CrossRefGoogle Scholar
  53. 53.
    Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys Condens Matter 14:2745CrossRefGoogle Scholar
  54. 54.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  55. 55.
    Troullier N, Martins JL (1991) Phys Rev B 43:1993CrossRefGoogle Scholar
  56. 56.
    Nozieres P, Pines D (1959) Phys Rev 113:1254CrossRefGoogle Scholar
  57. 57.
    Ehrenreich H, Cohen MH (1959) Phys Rev 115:786CrossRefGoogle Scholar
  58. 58.
    Guzman D, Cruz M, Wang C (2008) Microelectr J 39:523CrossRefGoogle Scholar
  59. 59.
    Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, CambridgeGoogle Scholar
  60. 60.
    Barone V, Hod O, Peralta JE, Scuseria GE (2011) Acc Chem Res 44:269CrossRefGoogle Scholar
  61. 61.
    He Y, Zeng T (2010) J Phys Chem C 114:18023CrossRefGoogle Scholar
  62. 62.
    Gonze X, Lee C (1997) Phys Rev B 55:10355CrossRefGoogle Scholar
  63. 63.
    Germain V, Brioude A, Ingert D, Pileni MP (2005) J Chem Phys 122:124707CrossRefGoogle Scholar
  64. 64.
    Brioude A, Pileni MP (2005) J Chem Phys B 109:23371CrossRefGoogle Scholar
  65. 65.
    Liao MS, Bonifassi P, Leszczynski J, Ray PC, Huang MJ, Watts JD (2010) J Phys Chem A 114:12701CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of VictoriaVictoriaCanada

Personalised recommendations