Theoretical Chemistry Accounts

, Volume 130, Issue 4–6, pp 1261–1273 | Cite as

Overview of the use of theory to understand infrared and Raman spectra and images of biomolecules: colorectal cancer as an example

Regular Article

Abstract

In this work, we present the state of the art in the use of theory (first principles, molecular dynamics, and statistical methods) for interpreting and understanding the infrared (vibrational) absorption and Raman scattering spectra. It is discussed how they can be used in combination with purely experimental studies to generate infrared and Raman images of biomolecules in biologically relevant solutions, including fluids, cells, and both healthy and diseased tissue. The species and conformers of the individual biomolecules are in many cases not stable structures, species, or conformers in the isolated state or in non-polar non-strongly interacting solvents. Hence, it is better to think of the collective behavior of the system. The collective interaction is not the simple sum of the individual parts. Here, we will show that this is also not true for the infrared and Raman spectra and images and that the models used must take this into account. Hence, the use of statistical methods to interpret and understand the infrared and Raman spectra and images from biological tissues, cells, parts of cells, fluids, and even whole organism should change accordingly. As the species, conformers and structures of biomolecules are very sensitive to their environment and aggregation state, the combined use of infrared and Raman spectroscopy and imaging and theoretical simulations are clearly fields, which can benefit from their joint and mutual development.

Keywords

Infrared Raman First principles Molecular mechanics Statistical methods Principal component analysis Linear discriminant analysis Cluster analysis Infrared imaging Raman imaging Image generation Colorectal cancer diagnosis 

Abbreviations

KS-DFT

Kohn–Sham density functional theory

PCA

Principal component analysis

LDA

Linear discriminant analysis

APT

Atomic polar tensor

VA

Vibrational absorption

IR

Infrared

RS

Raman scattering

References

  1. 1.
    Spotlight 400 Series User’s Guide (2008) PerkinElmer Ltd, Bucks HP9 2FX, United KingdomGoogle Scholar
  2. 2.
    Karsa LV, Lignini TA, Patnick J, Lambert R, Sauvaget C (2010) The dimensions of the CRC problem. Best Pract Res Clin Gastroenterol 24:381–396CrossRefGoogle Scholar
  3. 3.
    Cancer Facts & Figures 2010 (2010) American Cancer Society, Los Angeles, CA. http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2010-rev, Accessed 28 May 2011
  4. 4.
    Colorectal Cancer (2011) American Cancer Society, Los Angeles, CA. http://www.cancer.org/Cancer/ColonandRectumCancer/DetailedGuide/colorectal-cancer-pdf12, Accessed 28 May 2011
  5. 5.
    Winawer SJ (2007) Colorectal cancer screening. Best Pract Res Clin Gastroenterol 21:1031–1048CrossRefGoogle Scholar
  6. 6.
    Bird B, Miljkovic M, Romeo MJ, Smith J, Stone N, George MW, Diem M (2008) Infrared micro-spectral imaging: distinction of tissue types in axillary lymph node histology. BMC Clin Pathol 8:8CrossRefGoogle Scholar
  7. 7.
    Fernandez D, Bhargava R, Hewitt SM, Levin IW (2005) Infrared spectroscopic imaging for histopathologic recognition. Nat Biotechnol 23:469–474CrossRefGoogle Scholar
  8. 8.
    Andrade PO, Bitar RA, Yassoyama K, Martinho H, Santo AM, Bruno PM, Martin AA (2007) Study of normal colorectal tissue by FT-Raman spectroscopy. Anal Bioanal Chem 387:1643–1648CrossRefGoogle Scholar
  9. 9.
    Steiner G, Koch E (2009) Trends in Fourier transform infrared spectroscopic imaging. Anal Bioanal Chem 394:671–678CrossRefGoogle Scholar
  10. 10.
    Petibois C, Déléris G (2006) Chemical mapping of tumor progression by FTIR imaging: towards molecular histopathology. Trends Biotechnol 24:455–462CrossRefGoogle Scholar
  11. 11.
    Lasch P, Diem M, Hansch W, Naumann D (2006) Artificial neural networks as supervised techniques for FT-IR microspectroscopic imaging. J Chemom 20:209–220CrossRefGoogle Scholar
  12. 12.
    Krafft C, Codrich D, Pelizzo G, Sergo V (2008) Raman and FTIR microscopic imaging of colon tissue: a comparative study. J Biophotonics 1:154–169CrossRefGoogle Scholar
  13. 13.
    Hedegaard M, Matthaus C, Hassing S, Krafft C, Diem M, Popp J (2011) Spectral imaging and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theor Chem Acc. doi:10.1007/s00214-011-0957-1
  14. 14.
    Hertz JA, Krogh AS, Palmer RG (1991) Introduction to the theory of neural computation. Addison-Wesley, Redwood CityGoogle Scholar
  15. 15.
    Rommelhardt DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536CrossRefGoogle Scholar
  16. 16.
    Bohr H, Bohr J, Brunak S, Cotterill RM, Lautrup B, Nørskov L, Olsen OH, Petersen SB (1988) Protein secondary structure and homology by neural networks. The alpha-helices in rhodopsin. FEBS Lett 241:223–238CrossRefGoogle Scholar
  17. 17.
    Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58:1486–1493CrossRefGoogle Scholar
  18. 18.
    Nemzkin VN, Hadt RG, Belosludov RV, Mizuseki H, Kawazoe Y (2007) Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies? J Phys Chem A 111:12901–12913Google Scholar
  19. 19.
    Tomasi J, Pérsico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094CrossRefGoogle Scholar
  20. 20.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093CrossRefGoogle Scholar
  21. 21.
    Cramer C, Truhlar DG (1995) Continuum solvation models: classical and quantum mechanical implementations. In: Lipkowitz KB, Boyd DB (eds) Rev Comput Chem 6:1–72. doi:10.1002/9780470125830.ch1
  22. 22.
    Tajkhorshid E, Jalkanen KJ, Suhai S (1998) Structure and vibrational spectra of the zwitterion l-alanine in the presence of explicit water molecules: a density functional analysis. J Phys Chem B 102:5899–5913CrossRefGoogle Scholar
  23. 23.
    Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2008) Role of hydration in determining the structure and vibrational spectra of l-alanine and N-acetyl l-alanine N′-methylamide in aqueous solution: a combined theoretical and experimental approach. Theor Chem Acc 119:191–210Google Scholar
  24. 24.
    Jalkanen KJ, Suhai S (1996) N-acetyl-l-alanine N’-methylamide: a density functional analysis of the vibrational absorption and vibrational circular dichroism spectra. Chem Phys 208:81–116CrossRefGoogle Scholar
  25. 25.
    Deplazes E, van Bronswijk W, Zhu F, Barron LD, Ma S, Nafie LA, Jalkanen KJ (2008) A combined theoretical and experimental study of the structure and vibrational absorption, vibrational circular dichroism, Raman and Raman optical activity spectra of the l-histidine zwitterion. Theor Chem Acc 119:155–176CrossRefGoogle Scholar
  26. 26.
    Jalkanen KJ, Jürgensen VW, Claussen A, Jensen GM, Rahim A, Wade RC, Nardi F, Jung C, Nieminen RM, Degtyarenko IM, Herrmann F, Knapp-Mohammady M, Niehaus T, Frimand K, Suhai S (2006) The use of vibrational spectra to study protein and DNA structures, hydration, and binding of biomolecules: a combined theoretical and experimental approach. Int J Quantum Chem 106:1160–1198Google Scholar
  27. 27.
    Jalkanen KJ, Knapp-Mohammady M, Jensen KBS, Ma S, Nafie LA, Zhu F, Barron LD, Aoki Y, Mannfors B, Bohr J, Nieminen RM, Rodarte A, Pomogaev V, Alves RS, Carvalho CS, JACC Piva, Martin AA (2011). (in preparation)Google Scholar
  28. 28.
    Talbot I, Price A, Tellez M (2007) Biopsy pathology in colorectal disease, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  29. 29.
    Lasch P, Pacifico A, Diem M (2002) Spatially resolved IR microspectroscopy of single cells. Biopolym Biospectrosc 67:335–338CrossRefGoogle Scholar
  30. 30.
    Walsh MJ, Hammiche A, Fellous TG, Nicholson JM, Cotte M, Susini J, Fullwood NJ, Martin-Hirsch PL, Alison MR, Martin FL (2009) Tracking the cell hierarchy in the human intestine using biochemical signatures derives by mid-infrared microespectroscopy. Stem Cell Res 3:15–27CrossRefGoogle Scholar
  31. 31.
    Ramesh J, Salman A, Mordechai S, Argov S, Goldstein J, Sinelnikov I, Walfisch S, Guterman H (2001) FTIR microscopic studies on normal, polyp, and malignant human colonic tissues. Subsurfac Sens Tech Appl 2:99–117CrossRefGoogle Scholar
  32. 32.
    Conti C, Ferraris P, Giorgini E, Rubini C, Sabbatini S, Tosi G, Anastassopoulou J, Arapantoni P, Boukaki E, Konstadoudakis S, Theophanidesc T, Valavanis C (2008) FT-IR microimaging spectroscopy: a comparison between healthy and neoplastic human colon tissues. J Mol Struct 881:46–51CrossRefGoogle Scholar
  33. 33.
    Lasch P, Haensch W, Naumann D, Diem M (2004) Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochim Biophys Acta 1688:176–186Google Scholar
  34. 34.
    Pomogaev V, Gu FL, Pomogaeva A, Aoki Y (2009) Elongation method for calculating excited states of aromatic molecules embedded in polymers. Int J Quantum Chem 109:1328–1340CrossRefGoogle Scholar
  35. 35.
    Cusasi T, Granucci G, Persico M (2011) Photodynamics and time-resolved fluorescence of azobenzene in solution: a mixed quantum-classical simulation. J Am Chem Soc 133:5109–5123CrossRefGoogle Scholar
  36. 36.
    Pomogaev V, Pomogaeva A, Avramov P, Jalkanen KJ, Kachin S (2011) Thermo-dynamical contours of electronic-vibrational spectra simulated using the statistical quantum mechanical methods. Theor Chem Acc. doi:10.1007/s00214-011-0936-6
  37. 37.
    Imamura A, Aoki Y, Maekawa K (1990) A theoretical synthesis of polymers by using uniform localization of molecular orbitals: proposal of an elongation method. J Chem Phys 95:5419–5431CrossRefGoogle Scholar
  38. 38.
    Makowski M, Korchowiec J, Gu FL, Aoki Y (2006) Efficiency and accuracy of the elongation method as applied to electronic structures of large systems. J Comput Chem 27:1603–1619CrossRefGoogle Scholar
  39. 39.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433CrossRefGoogle Scholar
  40. 40.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  41. 41.
    Peach MJG, Helgaker T, Sałek P, Keal TW, Lutnæ OB, Tozer DJ, Handy NC (2004) Assessment of a coulomb-attenuated exchange-correlation energy functional. Phys Chem Chem Phys 8:558–562CrossRefGoogle Scholar
  42. 42.
    Song J-W, Tsuneda T, Sato T, Hirao K (2011) An examination of density functional theories on isomerization energy calculations of organic molecules. Theor Chem Acc. doi:10.1007/s00214-011-0997-6

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. A. A. C. Piva
    • 1
  • J. L. R. Silva
    • 1
  • L. Raniero
    • 1
  • A. A. Martin
    • 1
  • H. G. Bohr
    • 2
  • K. J. Jalkanen
    • 1
    • 2
    • 3
  1. 1.Laboratory of Biomedical Vibrational SpectroscopyInstitute of Research and Development, Universidade do Vale do Paraíba, UniVaPSão PauloBrazil
  2. 2.Department of Physics, Quantum Protein Center, QuPTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Division of Functional Genome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations