Advertisement

Theoretical Chemistry Accounts

, Volume 130, Issue 2–3, pp 543–548 | Cite as

Water trimer cation

  • Han Myoung Lee
  • Kwang S. Kim
Regular Article

Abstract

By using density functional theory (DFT) and high-level ab initio theory, we have investigated the structure, interaction energy, electronic property, and IR spectra of the water trimer cation [(H2O) 3 + ]. Two structures of the water trimer cation [the H3O+ containing linear (3Lp) structure versus the ring (3OO) structure] are compared. For the complete basis set (CBS) limit of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)], the 3Lp structure is 11.9 kcal/mol more stable than the 3OO structure. This indicates that the ionization of water clusters produce the hydronium cation moiety (H3O+) and the hydroxyl radical. It is interesting to note that the calculation results of the water trimer cation vary seriously depending on the calculation level. At the level of Möller–Plesset second-order perturbation (MP2) theory, the stability of 3OO is underestimated due to the underestimated O…O hemibonding energy. This stability is also underestimated even for the CCSD(T) single point calculations on the MP2-optimized geometry. For the 3OO structure, the MP2 and CCSD(T) calculations give closed-ring structures with a hemi-bond between two O atoms, while the DFT calculations show open-ring structures due to the overestimated O…O hemibonding energy. Thus, in order to obtain reliable stabilities and frequencies of the water trimer cation, the CCSD(T) geometry optimizations and frequency calculations are necessary. In this regard, the DFT functionals need to be improved to take into account the proper O…O hemibonding energy.

Keywords

Water trimer Ab initio calculations Density functional theory Water cluster Energetics 

Notes

Acknowledgments

This work is dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday. We are grateful for the financial support by KISTI (KSC-2011-G3-02).

References

  1. 1.
    Pribble RN, Zwier TS (1994) Science 265:75CrossRefGoogle Scholar
  2. 2.
    Liu K, Brown MG, Carter C, Saykally RJ, Gregory JK, Clary DC (1996) Nature 381:501CrossRefGoogle Scholar
  3. 3.
    Bumham CJ, Xantheas SS, Miller MA, Applegate BE, Miller RE (2002) J Chem Phys 117:1109CrossRefGoogle Scholar
  4. 4.
    Kim KS, Dupuis M, Lie GC, Clementi E (1986) Chem Phys Lett 131:451CrossRefGoogle Scholar
  5. 5.
    Franken KA, Jalaie M, Dykstra CE (1992) Chem Phys Lett 198:59CrossRefGoogle Scholar
  6. 6.
    Kim J, Kim KS (1998) J Chem Phys 109:5886CrossRefGoogle Scholar
  7. 7.
    Xantheas SS, Dunning TH (1992) J Phys Chem 96:7505CrossRefGoogle Scholar
  8. 8.
    Lee HM, Suh SB, Lee JY, Tarakeshwar P, Kim KS (2000) J Chem Phys 112:9759CrossRefGoogle Scholar
  9. 9.
    Buck U, Huisken F (2000) Chem Rev 100:3863CrossRefGoogle Scholar
  10. 10.
    Jorgensen P, Forster JS, Hvelplund P, Nielsen SB, Tomita S (2001) J Chem Phys 115:5101CrossRefGoogle Scholar
  11. 11.
    Kolaski M, Lee HM, Pak C, Kim KS (2008) J Am Chem Soc 130:103CrossRefGoogle Scholar
  12. 12.
    Sheu WS, Chiou MF (2011) J Phys Chem A 115:99CrossRefGoogle Scholar
  13. 13.
    Kim J, Lee HM, Suh SB, Majumdar D, Kim KS (2000) J Chem Phys 113:5259CrossRefGoogle Scholar
  14. 14.
    Xantheas SS, Dunning TH (1994) J Phys Chem 98:13489CrossRefGoogle Scholar
  15. 15.
    Lee HM, Kim D, Kim KS (2002) J Chem Phys 116:5509CrossRefGoogle Scholar
  16. 16.
    Kolaski M, Lee HM, Choi YC, Kim KS, Tarakeshwar P, Miller DJ, Lisy JM (2007) J Chem Phys 126:074302CrossRefGoogle Scholar
  17. 17.
    Gonzalez BS, Hernandez-Rojas J, Wales DJ (2005) Chem Phys Lett 412:23CrossRefGoogle Scholar
  18. 18.
    Lee EC, Lee HM, Tarakeshwar P, Kim KS (2003) J Chem Phys 119:7725CrossRefGoogle Scholar
  19. 19.
    Derepas AL, Soudan JM, Brenner V, Dognon JP, Ph Millie (2002) J Comput Chem 23:1013CrossRefGoogle Scholar
  20. 20.
    Lee HM, Kim J, Lee S, Mhin BJ, Kim KS (1999) J Chem Phys 111:3995CrossRefGoogle Scholar
  21. 21.
    Glendening ED, Feller D (1995) J Phys Chem 99:3060CrossRefGoogle Scholar
  22. 22.
    Park J, Kolaski M, Lee HM, Kim KS (2004) J Chem Phys 121:3108CrossRefGoogle Scholar
  23. 23.
    Miller DJ, Lisy JM (2008) J Am Chem Soc 130:15393CrossRefGoogle Scholar
  24. 24.
    Coe JV, Lee GH, Eaton JG, Arnold ST, Sarkas HW, Bowen KH (1990) J Chem Phys 92:3980CrossRefGoogle Scholar
  25. 25.
    Tachikawa H (2010) J Phys Chem A 114:10309CrossRefGoogle Scholar
  26. 26.
    Takayanagi T, Yoshikawa T, Motegi H, Shiga M (2009) Chem Phys Lett 482:195CrossRefGoogle Scholar
  27. 27.
    Yagi K, Okano Y, Sato T, Kawashima Y, Tsuneda T, Hirao K (2008) J Phys Chem A 112:9845CrossRefGoogle Scholar
  28. 28.
    Lee HM, Suh SB, Tarakeshwar P, Kim KS (2005) J Chem Phys 122:044309CrossRefGoogle Scholar
  29. 29.
    Jacobson LD, Herbert JM (2010) J Chem Phys 133:154506CrossRefGoogle Scholar
  30. 30.
    Lee HM, Lee S, Kim KS (2003) J Chem Phys 119:187CrossRefGoogle Scholar
  31. 31.
    Griffin GB, Young RM, Ehrler OT, Neumark DM (2009) J Chem Phys 131:194302CrossRefGoogle Scholar
  32. 32.
    Lee HM, Suh SB, Kim KS (2003) J Chem Phys 118:9981CrossRefGoogle Scholar
  33. 33.
    Jiang JC, Wang YS, Chang HC, Lin SH, Lee YT, Niedner-Schatteburg G, Chang HC (2000) J Am Chem Soc 122:1398CrossRefGoogle Scholar
  34. 34.
    Lee HM, Tarakeshwar P, Park J, Kolaski MR, Yoon YJ, Yi HB, Kim WY, Kim KS (2004) J Phys Chem A 108:2949CrossRefGoogle Scholar
  35. 35.
    Park M, Shin I, Singh NJ, Kim KS (2007) J Phys Chem A 111:10692CrossRefGoogle Scholar
  36. 36.
    Singh NJ, Olleta AC, Kumar A, Park M, Yi HB, Bandyopadhyay I, Lee HM, Tarakeshwar P, Kim KS (2006) Theor Chem Acc 115:127CrossRefGoogle Scholar
  37. 37.
    Fishman VN, Grabowski JJ (1999) J Phys Chem A 103:4879CrossRefGoogle Scholar
  38. 38.
    Dopfer O (2000) J Phys Chem A 104:11693CrossRefGoogle Scholar
  39. 39.
    Dopfer O, Roth D, Maier JP (2000) J Phys Chem A 104:11702CrossRefGoogle Scholar
  40. 40.
    Dopfer O, Roth D, Maier JP (2001) J Chem Phys 114:7081CrossRefGoogle Scholar
  41. 41.
    Hunter EPL, Lias SG (1998) J Phys Chem Ref Data 27:413CrossRefGoogle Scholar
  42. 42.
    Liu K, Cruzan JD, Saykally RJ (1996) Science 271:929CrossRefGoogle Scholar
  43. 43.
    Bednarek J, Plonka A, Hallbrucker A, Mayer E (1998) Radiat Phys chem 53:635CrossRefGoogle Scholar
  44. 44.
    Garrett BC, Dixon DA, Camaioni DM et al (2005) Chem Rev 105:355CrossRefGoogle Scholar
  45. 45.
    Angel L, Stace AJ (2001) Chem Phys Lett 345:277CrossRefGoogle Scholar
  46. 46.
    Barnett RN, Landman U (1995) J Phys Chem 99:17305CrossRefGoogle Scholar
  47. 47.
    Barnett RN, Landman U (1997) J Phys Chem A 101:164CrossRefGoogle Scholar
  48. 48.
    Novakovskaya YV, Stepanov NF (1999) J Phys Chem A 103:3285CrossRefGoogle Scholar
  49. 49.
    Kamarchik E, Kostko O, Bowman JM, Ahmed M, Krylov AI (2010) J Chem Phys 132:194311CrossRefGoogle Scholar
  50. 50.
    Cheng Q, Evangelista FA, Simmonett AC, Yamaguchi Y, Schaefer HF (2009) J Phys Chem A 113:13779CrossRefGoogle Scholar
  51. 51.
    Muller IB, Cederbaum LS (2006) J Chem Phys 125:204305CrossRefGoogle Scholar
  52. 52.
    Tachikawa H (2004) J Phys Chem A 108:7853CrossRefGoogle Scholar
  53. 53.
    Sodupe M, Bertran J, Rodrigues-Santiago L, Baerends EJ (1999) J Phys Chem A 103:166CrossRefGoogle Scholar
  54. 54.
    Gruning M, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2001) J Phys Chem A 105:9211CrossRefGoogle Scholar
  55. 55.
    Pieniazek PA, VandeVondele J, Jungwirth P, Krylov AI, Bradforth SE (2008) J Phys Chem A 112:6159CrossRefGoogle Scholar
  56. 56.
    Lee HM, Kim KS (2009) J Chem Theory Comput 5:976CrossRefGoogle Scholar
  57. 57.
    Kim H, Lee HM (2009) J Phys Chem A 113:6859CrossRefGoogle Scholar
  58. 58.
    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811CrossRefGoogle Scholar
  59. 59.
    Yoon J, Kim SK, Singh NJ, Kim KS (2006) Chem Soc Rev 35:355CrossRefGoogle Scholar
  60. 60.
    Ihm H, Yun S, Kim HG, Kim JK, Kim KS (2002) Org Lett 4:2897CrossRefGoogle Scholar
  61. 61.
    Helgaker T, Ruden TA, Jorgensen P, Olsen J, Klopper W (2004) J Phys Org Chem 17:913CrossRefGoogle Scholar
  62. 62.
    Min SK, Lee EC, Lee HM, Kim DY, Kim D, Kim KS (2008) J Comput Chem 29:1208CrossRefGoogle Scholar
  63. 63.
    Lee EC, Kim D, Jurecka P, Tarakeshwar P, Hobza P, Kim KS (2007) J Phys Chem A 111:3446CrossRefGoogle Scholar
  64. 64.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) GAUSSIAN 03, Revision A.1. Gaussian Inc., PittsburghGoogle Scholar
  65. 65.
    Amos RD, Bernhardsson A, Berning A, Celani P, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Knowles PJ, Korona T, Lindh R, Lloyd AW, McNicholas SJ, Manby FR, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schutz M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Werner HJ (2006) MOLPRO, a package of ab initio programs designed by Werner HJ, Knowles PJ, version 2002.6Google Scholar
  66. 66.
    Fraley PE, Rao KN (1969) J Mol Spectrosc 29:348CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Center for Superfunctional Materials, Department of ChemistryPohang University of Science and TechnologyPohangKorea

Personalised recommendations