Theoretical Chemistry Accounts

, Volume 130, Issue 4–6, pp 815–828 | Cite as

Interference-induced electron- and hole-conduction asymmetry

  • Sören Wohlthat
  • Gemma C. Solomon
  • Noel S. Hush
  • Jeffrey R. Reimers
Regular Article

Abstract

Principles established by Shephard and Paddon-Row for optimizing and controlling intramolecular electron transport through the modulation of interfering pathways are employed to design new molecules for steady-state conduction experiments aimed at manifesting electron–hole conduction asymmetry in a unique way. First, a review of the basic principles is presented through application to a pertinent model system in which a molecule containing donor and acceptor terminal linking groups with an internal multiple-pathway bridge is used to span two metal electrodes. Different interference patterns are produced depending on whether the through-molecule coupling pathways are symmetric or antisymmetric with respect to a topological bisecting plane, giving rise to asymmetric electron and hole conductances at the tight-binding (Hückel) level; this process is also described from a complementary molecular-orbital viewpoint. Subsequently, a new molecular system based on organic polyradicals is designed to allow such asymmetry to be realized in single-molecule conduction experiments. These polyradicals are analyzed using analogous simple models, density-functional theory (DFT) calculations of steady-state transmission, and intermediate neglect of differential overlap (INDO) calculations of intramolecular connectivity, verifying that polyradicals at low temperatures should show experimentally measureable electron–hole conduction asymmetry. A key feature of this system is that the polyradicals form a narrow partially occupied band of orbitals that lie within and well separated from the HOMO and LUMO orbitals of the surrounding molecular scaffold, allowing for holes and electrons to be transported through the same molecular band.

Keywords

Single-molecule conductivity Electron transfer Interference Polyradicals Electron–hole conduction asymmetry 

Notes

Acknowledgments

We thank the National Computational Infrastructure (NCI) for providing computing resources and the Australian Research Council (ARC). G.C.S. acknowledges funding from The Danish Council for Independent Research|Natural Sciences.

Supplementary material

214_2011_1045_MOESM1_ESM.pdf (709 kb)
Supplementary material 1 (PDF 709 kb)

References

  1. 1.
    Larsson S (1981) Electron transfer in chemical and biological systems. Orbital rules for nonadiabatic transfer. J Am Chem Soc 103:4034–4040CrossRefGoogle Scholar
  2. 2.
    Beratan DN, Hopfield JJ (1984) Calculation of electron tunneling matrix elements in rigid systems: mixed-valence dithiaspirocyclobutane molecules. J Am Chem Soc 106:1584–1594CrossRefGoogle Scholar
  3. 3.
    Mikkelsen KV, Ratner MA (1987) Electron tunneling in solid-state electron-transfer reactions. Chem Rev 87:113–153CrossRefGoogle Scholar
  4. 4.
    Joachim C (1987) Ligand-length dependence of the intramolecular electron transfer through-bond coupling parameter. Chem Phys 116:339CrossRefGoogle Scholar
  5. 5.
    Onuchic JN, Beratan DN (1987) Molecular bridge effects on distant charge tunneling. J Am Chem Soc 109:6771–6778CrossRefGoogle Scholar
  6. 6.
    Beratan DN, Onuchic JN, Hopfield JJ (1987) Electron tunneling through covalent and noncovalent pathways in proteins. J Chem Phys 86:4488–4498CrossRefGoogle Scholar
  7. 7.
    Rendell APL, Bacskay GB, Hush NS (1988) Electron transfer via dithiaspiroalkane linkages. Nature of long-range through-bond electronic coupling in disulfoxide radical cations and bis(metal) complexes and implications for the characterization of the SO bond. J Am Chem Soc 110:8343CrossRefGoogle Scholar
  8. 8.
    Sautet P, Joachim C (1988) Electronic interference produced by a benzene embedded in a polyacetylene chain. Chem Phys Lett 153:511–516CrossRefGoogle Scholar
  9. 9.
    Reimers JR, Hush NS (1989) Electron and energy transfer through bridged systems. I. Formalism. Chem Phys 134:323CrossRefGoogle Scholar
  10. 10.
    Ratner MA (1990) Bridge-assisted electron transfer: effective electronic coupling. J Phys Chem 94:4877–4883CrossRefGoogle Scholar
  11. 11.
    Reimers JR, Hush NS (1990) Electron and energy transfer through bridged systems. II. Tight binding linkages with zero asymmetric band gap. Chem Phys 146:89CrossRefGoogle Scholar
  12. 12.
    Onuchic JN, De Andrade PCP, Beratan DN (1991) Electron tunneling pathways in proteins: a method to compute tunneling matrix elements in very large systems. J Chem Phys 95:1131–1138CrossRefGoogle Scholar
  13. 13.
    Reimers JR, Hush NS (1994) Electron and energy transfer through bridged systems. III. Tight binding linkages with finite asymmetric band gap. J Photochem Photobiol A 82:31CrossRefGoogle Scholar
  14. 14.
    Paulson BP, Curtiss LA, Bal B, Closs GL, Miller JR (1996) Investigation of through-bond coupling dependence on spacer structure. J Am Chem Soc 118:378–387CrossRefGoogle Scholar
  15. 15.
    Skourtis SS, Onuchic JN, Beratan DN (1996) A method to analyze multi-pathway effects on protein mediated donor-acceptor coupling interactions. Inorg Chim Acta 243:167–175CrossRefGoogle Scholar
  16. 16.
    Jordan KD, Paddon-Row MN (1992) Analysis of the interactions responsible for long-range through-bond-mediated electronic coupling between remote chromophores attached to rigid polynorbornyl bridges. Chem Rev 92:395CrossRefGoogle Scholar
  17. 17.
    Shephard MJ, Paddon-Row MN (1995) Application of the parity rule of through-bond coupling to the design of “superbridges” that exhibit greatly enhanced electronic coupling. J Phys Chem 99:17497–17500CrossRefGoogle Scholar
  18. 18.
    Liang C, Newton MD (1992) Ab initio studies of electron transfer: pathway analysis of effective transfer integrals. J Phys Chem 96:2855CrossRefGoogle Scholar
  19. 19.
    Naleway CA, Curtiss LA, Miller JR (1991) Superexchange-pathway model for long-distance electronic couplings. J Phys Chem 95:8434CrossRefGoogle Scholar
  20. 20.
    Shephard MJ, Paddon-Row MN, Jordan KD (1994) Why is a simple n-alkyl bridge more efficient than a polynorbornyl bridge at mediating through-bond coupling? J Am Chem Soc 116:5328–5333CrossRefGoogle Scholar
  21. 21.
    Newton MD (1999) Control of electron transfer kinetics: models for medium reorganization and donor-acceptor coupling. Adv Chem Phys 106:303–375CrossRefGoogle Scholar
  22. 22.
    Skourtis SS, Beratan DN (1999) Theories of structure-function relationships for bridge-mediated electron transfer reactions. Adv Chem Phys 106:377–452CrossRefGoogle Scholar
  23. 23.
    Regan JJ, Onuchic JN (1999) Electron-transfer tubes. Adv Chem Phys 107:497–553CrossRefGoogle Scholar
  24. 24.
    Paddon-Row MN, Shephard MJ (1997) Through-bond orbital coupling the parity rule and the design of “Superbridges” which exhibit greatly enhanced electronic coupling: a natural bond orbital analysis. J Am Chem Soc 119:5355CrossRefGoogle Scholar
  25. 25.
    Nitzan A (2001) A relationship between electron-transfer rates and molecular conduction. J Phys Chem A 105:2677CrossRefGoogle Scholar
  26. 26.
    Cheong A, Roitberg AE, Mujica V, Ratner MA (1994) Resonances and interference effects on the effective electronic coupling in electron transfer. J Photochem Photobio A 82:81–86CrossRefGoogle Scholar
  27. 27.
    Mujica V, Kemp M, Ratner MA (1994) Electron conduction in molecular wires. II. Application to scanning tunneling microscopy. J Chem Phys 101:6856–6864CrossRefGoogle Scholar
  28. 28.
    Mujica V, Kemp M, Ratner MA (1994) Electron conduction in molecular wires. I. A scattering formalism. J Chem Phys 101:6849–6855CrossRefGoogle Scholar
  29. 29.
    Yaliraki SN, Roitberg AE, Gonzalez C, Mujica V, Ratner MA (1999) The injecting energy at molecule/metal interfaces: implications for conductance of molecular junctions from an ab initio molecular description. J Chem Phys 111:6997–7002CrossRefGoogle Scholar
  30. 30.
    Mujica V, Nitzan A, Mao Y, Davis W, Kemp M, Roitberg A, Ratner MA (1999) Electron transfer in molecules and molecular wires: geometry dependence, coherent transfer, and control. Adv Chem Phys 107:403–429CrossRefGoogle Scholar
  31. 31.
    Hall LE, Reimers JR, Hush NS, Silverbrook K (2000) A priori Green’s-function-based calculations of current-voltage characteristics of molecular wires. J Chem Phys 112:1510CrossRefGoogle Scholar
  32. 32.
    Patoux C, Coudret C, Launay JP, Joachim C, Gourdon A (1997) Topological effects on intramolecular electron transfer via quantum interference. Inorg Chem 36:5037–5049CrossRefGoogle Scholar
  33. 33.
    Emberly EG, Kirczenow G (1999) Antiresonances in molecular wires. J Phys Condens Matter 11:6911–6926CrossRefGoogle Scholar
  34. 34.
    Lee HW (1999) Generic transmission zeros and in-phase resonances in time-reversal symmetric single channel transport. Phys Rev Lett 82:2358–2361CrossRefGoogle Scholar
  35. 35.
    Baer R, Neuhauser D (2002) Phase coherent electronics: a molecular switch based on quantum interference. J Am Chem Soc 124:4200–4201CrossRefGoogle Scholar
  36. 36.
    Mayor M, Weber HB, Reichert J, Elbing M, Von Hänisch C, Beckmann D, Fischer M (2003) Electric current through a molecular rod—relevance of the position of the anchor groups. Angew Chem Int Ed 42:5834–5838CrossRefGoogle Scholar
  37. 37.
    Stadler R, Forshaw M, Joachim C (2003) Modulation of electron transmission for molecular data storage. Nanotechnology 14:138–142CrossRefGoogle Scholar
  38. 38.
    Stadler R, Ami S, Joachim C, Forshaw M (2004) Integrating logic functions inside a single molecule. Nanotechnology 15:S115–S121CrossRefGoogle Scholar
  39. 39.
    Walter D, Neuhauser D, Baer R (2004) Quantum interference in polycyclic hydrocarbon molecular wires. Chem Phys 299:139–145CrossRefGoogle Scholar
  40. 40.
    Ernzerhof M, Zhuang M, Rocheleau P (2005) Side-chain effects in molecular electronic devices. J Chem Phys 123:134704/1–134704/5CrossRefGoogle Scholar
  41. 41.
    Stadler R, Thygesen KS, Jacobsen KW (2005) An ab initio study of electron transport through nitrobenzene: the influence of leads and contacts. Nanotechnology 16:S155–S160CrossRefGoogle Scholar
  42. 42.
    Cardamone DM, Stafford CA, Mazumdar S (2006) Controlling quantum transport through a single molecule. Nano Lett 6:2422–2426CrossRefGoogle Scholar
  43. 43.
    Papadopoulos TA, Grace IM, Lambert CJ (2006) Control of electron transport through Fano resonances in molecular wires. Phys Rev B Condens Matter Mater Phys 74:193306CrossRefGoogle Scholar
  44. 44.
    Ernzerhof M (2007) A simple model of molecular electronic devices and its analytical solution. J Chem Phys 127:204709CrossRefGoogle Scholar
  45. 45.
    Stafford CA, Cardamone DM, Mazumdar S (2007) The quantum interference effect transistor. Nanotechnology 18:424014CrossRefGoogle Scholar
  46. 46.
    Maiti SK (2007) Quantum transport through polycyclic hydrocarbon molecules. Phys Lett A 366:114–119CrossRefGoogle Scholar
  47. 47.
    Solomon GC, Andrews DQ, Goldsmith RH, Hansen T, Wasielewski MR, Van DRP, Ratner MA (2008) Quantum interference in acyclic systems: conductance of cross-conjugated molecules. J Am Chem Soc 130:17301–17308CrossRefGoogle Scholar
  48. 48.
    Wohlthat S, Pauly F, Reimers JR (2008) Two-dimensional phenanthroline-based extended pi-conjugated molecules for single-molecule conduction. J Phys Condens Matter 20:295208CrossRefGoogle Scholar
  49. 49.
    Andrews DQ, Solomon GC, Goldsmith RH, Hansen T, Wasielewski MR, Van Duyne RP, Ratner MA (2008) Quantum interference: the structural dependence of electron transmission through model systems and cross-conjugated molecules. J Phys Chem C 112:16991–16998CrossRefGoogle Scholar
  50. 50.
    Andrews DQ, Solomon GC, Van Duyne RP, Ratner MA (2008) Single molecule electronics: increasing dynamic range and switching speed using cross-conjugated species. J Am Chem Soc 130:17309–17319CrossRefGoogle Scholar
  51. 51.
    Fowler PW, Pickup BT, Todorova TZ (2008) Equiconducting molecular conductors. Chem Phys Lett 465:142–146CrossRefGoogle Scholar
  52. 52.
    Ke S-H, Yang W, Baranger HU (2008) Quantum-interference-controlled molecular electronics. Nano Lett 8:3257–3261CrossRefGoogle Scholar
  53. 53.
    Pickup BT, Fowler PW (2008) An analytical model for steady-state currents in conjugated systems. Chem Phys Lett 459:198–202CrossRefGoogle Scholar
  54. 54.
    Solomon GC, Andrews DQ, Hansen T, Goldsmith RH, Van Duyne RP, Ratner MA (2008) Understanding quantum interference in coherent molecular conduction. J Chem Phys 129:054701CrossRefGoogle Scholar
  55. 55.
    Solomon GC, Andrews DQ, van Duyne RP, Ratner MA (2008) When things are not as they seem: quantum interference turns molecular electron transfer “Rules” upside down. J Am Chem Soc 130:7788–7789CrossRefGoogle Scholar
  56. 56.
    Yoshizawa K, Tada T, Staykov A (2008) Orbital views of the electron transport in molecular devices. J Am Chem Soc 130:9406–9413CrossRefGoogle Scholar
  57. 57.
    Fowler PW, Pickup BT, Todorova TZ, Pisanski T (2009) Fragment analysis of single-molecule conduction. J Chem Phys 130:174708CrossRefGoogle Scholar
  58. 58.
    Hansen T, Solomon GC, Andrews DQ, Ratner MA (2009) Interfering pathways in benzene: an analytical treatment. J Chem Phys 131:194704CrossRefGoogle Scholar
  59. 59.
    Solomon GC, Andrews DQ, Van Duyne RP, Ratner MA (2009) Electron transport through conjugated molecules: when the pi system only tells part of the story. Chem Phys Chem 10:257–264CrossRefGoogle Scholar
  60. 60.
    Stadler R (2009) Quantum interference effects in electron transport through nitrobenzene with pyridil anchor groups. Phys Rev B Condens Matter Mater Phys 80:125401CrossRefGoogle Scholar
  61. 61.
    Tsuji Y, Staykov A, Yoshizawa K (2009) Orbital control of the conductance photoswitching in diarylethene. J Phys Chem C 113:21477–21483CrossRefGoogle Scholar
  62. 62.
    Tsuji Y, Staykov A, Yoshizawa K (2009) Orbital view concept applied on photoswitching systems. Thin Solid Films 518:444–447CrossRefGoogle Scholar
  63. 63.
    Herrmann C, Solomon GC, Subotnik JE, Mujica V, Ratner MA (2010) Ghost transmission: how large basis sets can make electron transport calculations worse. J Chem Phys 132:024103/1–024103/17CrossRefGoogle Scholar
  64. 64.
    Li X, Staykov A, Yoshizawa K (2010) Orbital views of the electron transport through polycyclic aromatic hydrocarbons with different molecular sizes and edge type structures. J Phys Chem C 114:9997–10003CrossRefGoogle Scholar
  65. 65.
    Rincon J, Hallberg K, Aligia AA, Ramasesha S (2009) Quantum interference in coherent molecular conductance. Phys Rev Lett 103:266807CrossRefGoogle Scholar
  66. 66.
    Liu H, Ni W, Zhao J, Wang N, Guo Y, Taketsugu T, Kiguchi M, Murakoshi K (2009) Nonequilibrium Green’s function study on the electronic structure and transportation behavior of the conjugated molecular junction: terminal connections and intramolecular connections. J Chem Phys 130:244501CrossRefGoogle Scholar
  67. 67.
    Herrmann C, Solomon GC, Ratner MA (2010) Local pathways in coherent electron transport through iron porphyrin complexes: a challenge for first-principles transport calculations. J Phys Chem C 114:20813–20820CrossRefGoogle Scholar
  68. 68.
    Markussen T, Schiotz J, Thygesen KS (2010) Electrochemical control of quantum interference in anthraquinone-based molecular switches. J Chem Phys 132:224104CrossRefGoogle Scholar
  69. 69.
    Ricks AB, Solomon GC, Colvin MT, Scott AM, Chen K, Ratner MA, Wasielewski MR (2010) Controlling electron transfer in donor-bridge-acceptor molecules using cross-conjugated bridges. J Am Chem Soc 132:15427–15434CrossRefGoogle Scholar
  70. 70.
    Saha KK, Nikolic BK, Meunier V, Lu W, Bernholc J (2010) Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes. Phys Rev Lett 105:236803CrossRefGoogle Scholar
  71. 71.
    Solomon GC, Herrmann C, Vura-Weis J, Wasielewski MR, Ratner MA (2010) The chameleonic nature of electron transport through pi-stacked systems. J Am Chem Soc 132:7887–7889CrossRefGoogle Scholar
  72. 72.
    Solomon GC, Vura-Weis J, Herrmann C, Wasielewski MR, Ratner MA (2010) Understanding coherent transport through pi-stacked systems upon spatial dislocation. J Phys Chem B 114:14735–14744CrossRefGoogle Scholar
  73. 73.
    Yang H, Mayne AJ, Boucherit M, Comtet G, Dujardin G, Kuk Y (2010) Quantum interference channeling at graphene edges. Nano Lett 10:943–947CrossRefGoogle Scholar
  74. 74.
    Fracasso D, Valkenier H, Hummelen JC, Solomon GC, Chiechi RC (2011) Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with Eutectic Ga-In (EGaIn) top-contacts. J Am Chem Soc 133:9556–9563CrossRefGoogle Scholar
  75. 75.
    Solomon GC, Andrews DQ, Ratner MA (2011) Quantum interference in acyclic molecules. In: Siebbeles LDA, Grozema FC (eds) Charge and exciton transport through molecular wires. Wiley, London, pp 19–59Google Scholar
  76. 76.
    Tsuji Y, Staykov A, Yoshizawa K (2011) Orbital views of molecular conductance perturbed by anchor units. J Am Chem Soc 133:5955–5965CrossRefGoogle Scholar
  77. 77.
    Markussen T, Stadler R, Thygesen KS (2010) The relation between structure and quantum interference in single molecule junctions. Nano Lett 10:4260–4265CrossRefGoogle Scholar
  78. 78.
    Li X, Staykov A, Yoshizawa K (2011) Orbital views of the electron transport through heterocyclic aromatic hydrocarbons. Theor Chem Acc. doi: 10.1007/s00214-011-0968-y
  79. 79.
    Naraba T, Mizushima Y, Noake H, Imamura A, Igarashi Y, Torihashi Y, Nishioka A (1965) Preparation and electrical properties of poly(tetracyanoethylene) copper chelate film. Jpn J Appl Phys 4:977–986CrossRefGoogle Scholar
  80. 80.
    Naraba T, Mizushima Y, Noake H, Nishioka A, Igarashi Y, Imamura A, Torihashi Y (1967) Preparation and electrical properties of poly(tetracyanoethylene copper chelate) film. Rev Electr Commun Lab 15:551–562Google Scholar
  81. 81.
    Yamabe T, Tanaka K, Teramae H, Fukui K, Imamura A, Shirakawa H, Ikeda S (1979) Electronic properties of pure and doped polyacetylenes. J Phys C 12:L257–L262CrossRefGoogle Scholar
  82. 82.
    Seki K, Tanaka H, Ohta T, Aoki Y, Imamura A, Fujimoto H, Yamamoto H, Inokuchi H (1990) Electronic structure of poly(tetrafluoroethylene) studied by UPS, VUV absorption, and band calculations. Phys Scr 41:167–171CrossRefGoogle Scholar
  83. 83.
    Imamura A, Aoki Y, Nishimoto K, Kurihara Y, Nagao A (1994) Calculations of the electronic structure of various aperiodic polymers by an elongation method. Int J Quant Chem 52:309–319CrossRefGoogle Scholar
  84. 84.
    Tada T, Aoki Y, Imamura A (1998) The contributions of chalcogen to the Peierls instability in model crystals of charge-transfer complexes. Synth Met 95:169–177CrossRefGoogle Scholar
  85. 85.
    Imamura A (1999) Molecular orbital calculations of pi-electron conjugated polymers. Kobunshi 48:336Google Scholar
  86. 86.
    Imamura A, Aoki Y (2003) Method of controlling electric conductivity by modifying both terminals of compounds containing polyyne chains. Japan Patent JP2003016120A, 17 Jan 2003Google Scholar
  87. 87.
    Imamura A, Aoki Y (2003) Parallel and layered structure process for efficient calculation of electronic state of giant molecules. Japan Patent JP2003012567A, 15 Jan 2003Google Scholar
  88. 88.
    Ohnishi S, Gu FL, Naka K, Imamura A, Kirtman B, Aoki Y (2004) Calculation of static (hyper)polarizabilities for pi-conjugated donor/acceptor molecules and block copolymers by the elongation finite-field method. J Phys Chem A 108:8478–8484CrossRefGoogle Scholar
  89. 89.
    Tada T, Aoki Y, Imamura A (2004) An analytical molecular orbital approach in tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ). Mol Phys 102:1891–1901CrossRefGoogle Scholar
  90. 90.
    Imamura A, Aoki Y (2006) Molecular design of a pi-conjugated single-chain electronically conductive polymer. Int J Quant Chem 106:1924–1933CrossRefGoogle Scholar
  91. 91.
    Gagliano ER, Avignon M (1994) Electron-hole asymmetry in a generalized one-band Hubbard model. In: Noce C, Romano A, Scarpetta G (eds) Superconductivity and strongly correlated electron systems. World Scientific, Singapore, pp 226–240Google Scholar
  92. 92.
    Zaitsev RO, Mikhailova YV (1996) The electron-hole asymmetry of high temperature superconductors. Fiz Nizk Temp (Kiev) 22:510–514Google Scholar
  93. 93.
    Hirsch JE (2003) Electron-hole asymmetry is the key to superconductivity. Int J Mod Phys B 17:3236–3241CrossRefGoogle Scholar
  94. 94.
    Kobayashi A, Tsuruta A, Matsuura T, Kuroda Y (2004) Origins of electron-hole asymmetry in cuprate superconductors. J Magn Magn Mater 272–276:E187–E188CrossRefGoogle Scholar
  95. 95.
    Maciag A, Wrobel P (2006) Asymmetric tunneling conductance in doped antiferromagnets. Acta Phys Pol A 109:607–610Google Scholar
  96. 96.
    Hwang EH, Adam S, Das SS (2007) Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98:186806CrossRefGoogle Scholar
  97. 97.
    Han W, Wang WH, Pi K, McCreary KM, Bao W, Li Y, Miao F, Lau CN, Kawakami RK (2009) Electron-hole asymmetry of spin injection and transport in single-layer graphene. Phys Rev Lett 102:137205CrossRefGoogle Scholar
  98. 98.
    Fan X-Y, Nouchi R, Yin L-C, Tanigaki K (2010) Effects of electron-transfer chemical modification on the electrical characteristics of graphene. Nanotechnology 21:475208CrossRefGoogle Scholar
  99. 99.
    Mucha-Kruczynski M, McCann E, Fal’ko VI (2010) Electron-hole asymmetry and energy gaps in bilayer graphene. Semicond Sci Technol 25:033001CrossRefGoogle Scholar
  100. 100.
    Vojta M, Fritz L, Bulla R (2010) Gate-controlled Kondo screening in graphene: quantum criticality and electron-hole asymmetry. EPL 90:27006CrossRefGoogle Scholar
  101. 101.
    Itoh K, Takui T (2004) High spin chemistry underlying organic molecular magnetism. Topological symmetry rule as the first principle of spin alignment in organic open-shell systems of Ï€-conjugation and their ions. Proc Japan Acad Ser B 80:29–40CrossRefGoogle Scholar
  102. 102.
    Kemp M, Roitberg A, Mujica V, Wanta T, Ratner MA (1996) Molecular wires: extended coupling and disorder effects. J Phys Chem 100:8349–8355CrossRefGoogle Scholar
  103. 103.
    Reimers JR, Hush NS (1990) Electron and energy transfer through bridged systems. VII. Electronically-forbidden but vibronically-allowed long-range transfer: a case study using norbornylog bridges. Chem Phys 146:105CrossRefGoogle Scholar
  104. 104.
    Wolfgang J, Risser SM, Priyadarshy S, Beratan DN (1997) Secondary structure conformations and long range electronic interactions in oligopeptides. J Phys Chem B 101:2986–2991CrossRefGoogle Scholar
  105. 105.
    Bixon M, Jortner J (1997) Electron transfer via bridges. J Chem Phys 107:5154–5170CrossRefGoogle Scholar
  106. 106.
    Balabin IA, Onuchic JN (2000) Dynamically controlled protein tunneling paths in photosynthetic reaction centers. Science 290:114–117CrossRefGoogle Scholar
  107. 107.
    Troisi A, Ratner MA, Nitzan A (2003) Vibronic effects in off-resonant molecular wire conduction. J Chem Phys 118:6072–6082CrossRefGoogle Scholar
  108. 108.
    Goldsmith RH, Wasielewski MR, Ratner MA (2006) Electron transfer in multiply bridged donor-acceptor molecules: Dephasing and quantum coherence. J Phys Chem B 110:20258–20262CrossRefGoogle Scholar
  109. 109.
    Gagliardi A, Solomon GC, Pecchia A, Frauenheim T, Di Carlo A, Hush NS, Reimers JR (2007) A priori method for propensity rules for inelastic electron tunneling spectroscopy of single-molecule conduction. Phys Rev B 75:174306/1–174306/8CrossRefGoogle Scholar
  110. 110.
    Skourtis SS, Waldeck DH, Beratan DN (2004) Inelastic electron tunneling erases coupling-pathway interferences. J Phys Chem B 108:15511–15518CrossRefGoogle Scholar
  111. 111.
    Andrews DQ, Van Duyne RP, Ratner MA (2008) Stochastic modulation in molecular electronic transport junctions: molecular dynamics coupled with charge transport calculations. Nano Lett 8:1120–1126CrossRefGoogle Scholar
  112. 112.
    Xiao D, Skourtis SS, Rubtsov IV, Beratan DN (2009) Turning charge transfer on and off in a molecular interferometer with vibronic pathways. Nano Lett 9:1818–1823CrossRefGoogle Scholar
  113. 113.
    Skourtis SS, Waldeck DH, Beratan DN (2010) Fluctuations in biological and bioinspired electron-transfer reactions. Ann Rev Phys Chem 61:461–485CrossRefGoogle Scholar
  114. 114.
    Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1:223–231CrossRefGoogle Scholar
  115. 115.
    Buttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized man-channel conductance formula with application to small rings. Phys Rev B 31:6207–6215CrossRefGoogle Scholar
  116. 116.
    Meir Y, Wingreen NS (1992) Landauer formula for the current through an interacting electron region. Phys Rev Lett 68:2512–2515CrossRefGoogle Scholar
  117. 117.
    Data S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeGoogle Scholar
  118. 118.
    Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. World Scientific, SingaporeGoogle Scholar
  119. 119.
    Pauly F, Viljas JK, Huniar U, Häfner M, Wohlthat S, Bürkle M, Cuevas JC, Schön G (2008) Cluster-based density-functional approach to quantum transport through molecular and atomic contacts. New J Phys 10:125019CrossRefGoogle Scholar
  120. 120.
    Solomon GC, Reimers JR, Hush NS (2005) Overcoming computational uncertainties to reveal chemical sensitivity in single molecule conduction calculations. J Chem Phys 122:224502-1–224502-7Google Scholar
  121. 121.
    Priyadarshy S, Skourtis SS, Risser SM, Beratan DN (1996) Bridge-mediated electronic interactions: differences between Hamiltonian and Green function partitioning in a non-orthogonal basis. J Chem Phys 104:9473–9481CrossRefGoogle Scholar
  122. 122.
    Kurnikov IV, Beratan DN (1996) Ab initio based effective Hamiltonians for long-range electron transfer: Hartree-Fock analysis. J Chem Phys 105:9561–9573CrossRefGoogle Scholar
  123. 123.
    Wang J, Guo H (2009) Relation between nonequilibrium Green’s function and Lippmann-Schwinger formalism in the first-principles quantum transport theory. Phys Rev B 79:045119CrossRefGoogle Scholar
  124. 124.
    Solomon GC, Herrmann C, Hansen T, Mujica V, Ratner MA (2010) Exploring local currents in molecular junctions. Nature Chem 2:223CrossRefGoogle Scholar
  125. 125.
    Weinberg S (1995) The quantum theory of fields. Cambridge University Press, LondonGoogle Scholar
  126. 126.
    Crayston JA, Devine JN, Walton JC (2000) Conceptual and synthetic strategies for the preparation of organic magnets. Tetrahedron 56:7829–7857CrossRefGoogle Scholar
  127. 127.
    Rajca A, Utamapanya S (1993) Toward organic synthesis of a magnetic particle: dendritic polyradicals with 15 and 31 centers for unpaired electrons. J Am Chem Soc 115:10688–10694CrossRefGoogle Scholar
  128. 128.
    Rajca A, Rajca S, Wongsriratanakul J (1999) Very high-spin organic polymer: pi-conjugated hydrocarbon network with average spin of S >=40. J Am Chem Soc 121:6308–6309CrossRefGoogle Scholar
  129. 129.
    Rajca A, Wongsriratanakul J, Rajca S (2001) Magnetic ordering in an organic polymer. Science 294:1503–1505CrossRefGoogle Scholar
  130. 130.
    Mataga N (1968) Possible “ferromagnetic states” of some hypothetical hydrocarbons. Theor Chim Acta 10:372–376CrossRefGoogle Scholar
  131. 131.
    Wohlthat S, Pauly F, Reimers JR (2008) The conduction properties of alpha-omega-diaminoalkanes and hydrazine bridging gold electrodes. Chem Phys Lett 454:284–288CrossRefGoogle Scholar
  132. 132.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.02. Gaussian, Inc, PittsburghGoogle Scholar
  133. 133.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165CrossRefGoogle Scholar
  134. 134.
    TURBOMOLE V6.0 (2009) University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, KarlsruheGoogle Scholar
  135. 135.
    Wohlthat S, Kirchner T, Reimers JR (2009) N-silylamine junctions for molecular wires to gold: the effect of binding atom hybridization on the electronic transmission. J Phys Chem C 113:20458–20462CrossRefGoogle Scholar
  136. 136.
    Zeng J, Hush NS, Reimers JR (1996) Solvent effects on molecular and ionic spectra. VII: Modeling the absorption and electroabsorption spectra of pentaammineruthenium(II)-pyrazine and its conjugate acid in water. J Am Chem Soc 118:2059CrossRefGoogle Scholar
  137. 137.
    Shapley WA, Reimers JR, Hush NS (2002) INDO/S parameters for gold. Int J Quant Chem 90:424CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sören Wohlthat
    • 1
  • Gemma C. Solomon
    • 2
  • Noel S. Hush
    • 1
    • 3
  • Jeffrey R. Reimers
    • 1
  1. 1.School of ChemistryThe University of SydneySydneyAustralia
  2. 2.Nano-Science Center and Department of ChemistryUniversity of CopenhagenCopenhagen ØDenmark
  3. 3.School of Molecular BioscienceThe University of SydneySydneyAustralia

Personalised recommendations