Theoretical Chemistry Accounts

, Volume 130, Issue 4–6, pp 991–1000 | Cite as

Effect of non-specificity in shape, size, and dielectric properties on electromagnetic extinction and optical field enhancement from spherical nanolayered metal-dielectric particles

Regular Article

Abstract

Metal-dielectric composite nanospheres can amplify the scattering, emission, and absorption signature of molecules in their vicinity. Their ability to redistribute electromagnetic fields and produce pockets of greatly amplified fields is the dominant cause in achieving enhancement effects, for example, for surface-enhanced Raman spectroscopy. Extensive use of the field amplification has been made in devising ultrasensitive tag (label)–based spectroscopic techniques. For example, we have recently proposed nano-layered alternating metal-dielectric particles (nano-LAMP)—a symmetric implementation of which is a nanoparticle consisting of alternating metal and dielectric shells. Exceptional spatial and spectral control on amplification can be achieved by designing the size and location of metal and dielectric layers in this geometry. Theoretical understanding exists and an engineering optimization approach can be adapted to design a palette of probes exploiting this control and tunability. However, current fabrication techniques are limited in their ability to achieve the required specificity in the spherical configurations. Hence, we investigate here the effects of variability, introduced by fabrication approaches into the structure of nano-LAMPs, on their spectroscopic signature. In particular, theoretical results are presented for the effects on enhancement due to variability in size, shape, and dielectric environment in the cases of gold–silica, silver–silica, and copper–silica nano-LAMPs. The results obtained show that the shape and dielectric properties of the metal shell play a crucial role in experimentally realizing the specificity of the magnitude of the enhancement and determine the key parameters to control and test in experimental validations.

Keywords

Spectroscopic enhancement Nanoparticles Electromagnetic scattering Mie theory 

References

  1. 1.
    Faraday M (1857) Phil Trans of Royal Soc Lond 147:145–181CrossRefGoogle Scholar
  2. 2.
    Prasad PN (2004) Nanophotonics. Wiley, LondonCrossRefGoogle Scholar
  3. 3.
    Kawata S (2001) Near-field optics and surface plasmon polaritons. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Van Dijk MA, Tchebotareva AL, Orrit M, Lippitz M, Berciaud S, Lasne D, Cognet L, Lounis B (2006) Phys Chem Phys 8:3486–3495CrossRefGoogle Scholar
  5. 5.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677CrossRefGoogle Scholar
  6. 6.
    Eustis S, El-Sayed MA (2005) Chem Soc Rev 35:209–217CrossRefGoogle Scholar
  7. 7.
    Noguez C (2007) J Phys Chem C 111:3806–3819CrossRefGoogle Scholar
  8. 8.
    Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) J Am Chem Soc 130:12616–12617CrossRefGoogle Scholar
  9. 9.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Acc Chem Res 41:1578–1586CrossRefGoogle Scholar
  10. 10.
    Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Nano Lett 7:1947–1952CrossRefGoogle Scholar
  11. 11.
    Doering WE, Piotti ME (2007) Adv Mater 19:3100–3108CrossRefGoogle Scholar
  12. 12.
    Kneipp J, Kneipp H, Kneipp K (2008) Chem Soc Rev 37:1052–1060CrossRefGoogle Scholar
  13. 13.
    Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Chem Phys Lett 288:243–247CrossRefGoogle Scholar
  14. 14.
    Xu H (2005) Phys Rev B 72:0734051–0734054Google Scholar
  15. 15.
    Chen K, Liu Y, Ameer G, Backman V (2005) J Biomed Opt 10:024005-1-6Google Scholar
  16. 16.
    Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ (2003) Appl Phys Lett 82:257–259CrossRefGoogle Scholar
  17. 17.
    Kodali AK, Bhargava R (2008) Proc SPIE 7032:70320V-1-10Google Scholar
  18. 18.
    Wustholz KL, Henry A-I, McMohan M, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) J Am Chem Soc 132:10903–10910CrossRefGoogle Scholar
  19. 19.
    Bukasov R, Shumkaer-Parry JS (2007) Nano Lett 7:1113–1118CrossRefGoogle Scholar
  20. 20.
    Kodali AK, Llora X, Bhargava R (2010) Proc Natl Acad Sci 107:13620–13625CrossRefGoogle Scholar
  21. 21.
    Li JF, Huang YF, Ding Y, Yuang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Nat Lett 464:392–395CrossRefGoogle Scholar
  22. 22.
    Su X, Zhang J, Sun L, Koo T-W, Chan S, Sundararajan N, Yamakawa M, Berlin AA (2005) Nano Lett 5:49–54CrossRefGoogle Scholar
  23. 23.
    Kodali AK, Bhargava R (2010) Chapter 15, Oxford Handbook of Science and Technology. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Averitt RD, Westcott SL, Halas NJ (1999) J Opt Soc Am A 16:1824–1832CrossRefGoogle Scholar
  25. 25.
    Hu Y, Fleming RC, Drezek RA (2008) Opt Exp 16:19579–19591CrossRefGoogle Scholar
  26. 26.
    Kodali AK, Schulmerich MV, Palekar R, Llora X, Bhargava R (2010) Opt Exp 18:23302–23313CrossRefGoogle Scholar
  27. 27.
    Radloff C, Halas NJ (2004) Nano Lett 4:1323–1327CrossRefGoogle Scholar
  28. 28.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science 302:419–422CrossRefGoogle Scholar
  29. 29.
    Lim DK, Jeon K-S, Hwang J-H, Kim H, Kwon S, Suh YD, Nam J-M (2011) Nature Nanotech 6:452–460CrossRefGoogle Scholar
  30. 30.
    Johnson BR (1996) Appl Opt 35:3286–3296CrossRefGoogle Scholar
  31. 31.
    Oldenburg SJ, Averitt RD, Westcott S, Halas NJ (1998) Chem Phys Lett 288:243–248CrossRefGoogle Scholar
  32. 32.
    See KH, Mullins ME, Mills OP, Heiden PA (2005) Nanotechnology 16:1950–1959CrossRefGoogle Scholar
  33. 33.
    Caruso F, Spasova M, Salgueirino-Maceira V, Liz-Marzan LM (2001) Adv Mater 13:1090–1094CrossRefGoogle Scholar
  34. 34.
    Liz-Marzan LM, Correa Duarte MA, Pastoriza-Santos I, Mulvaney P, Ung T, Giersig M, and Kotov NA (2001) Core-shell nanoparticles and assemblies there of, Chapter 5. In: Nalwa HS (ed) Handbook of Surfaces and Interfaces of Materials, vol 3, pp 189–237Google Scholar
  35. 35.
    Xia X, Liu Y, Backman V, Ameer GA (2006) Nanotechnology 17:5435CrossRefGoogle Scholar
  36. 36.
    Johnson PB, Christy RW (1972) Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  37. 37.
    Palik ED (ed) (1991) Handbook of optical constants of solids. Academic Press, New YorkGoogle Scholar
  38. 38.
    Khlebtsov B, Khlebtsov N (2006) J Biomed Opt 11:044002Google Scholar
  39. 39.
    Hao E, Li S, Bailey RC, Zou S, Schatz GC, Hupp JT (2004) J Phys Chem B 108:1224–1229CrossRefGoogle Scholar
  40. 40.
    Moskovits M (2005) J Raman Spec 36:485–496CrossRefGoogle Scholar
  41. 41.
    Morton SM, Jensen L (2009) J Am Chem Soc 131:4090–4098CrossRefGoogle Scholar
  42. 42.
    Schatz GC, Van Duyne RP (2006) Handbook of vibrational spectroscopy. Wiley, LondonGoogle Scholar
  43. 43.
    Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Langmuir 19:4784–4790CrossRefGoogle Scholar
  44. 44.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, LondonGoogle Scholar
  45. 45.
    Wiscombe WJ (1980) Appl Opt 19:1505–1509CrossRefGoogle Scholar
  46. 46.
    Ghosh G (1999) Optc Comm 163:95–102CrossRefGoogle Scholar
  47. 47.
    Leupacher W, Penzkofer A (1984) Appl Opt 23:1554–1557CrossRefGoogle Scholar
  48. 48.
    Draine BT, Flatau PJ (1994) J Opt Soc Am 4:1491–1499CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Beckman Institute of Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Departments of Bioengineering and Electrical and Computer EngineeringThe University of Illinois Cancer Center, University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations