Advertisement

Theoretical Chemistry Accounts

, Volume 130, Issue 2–3, pp 491–500 | Cite as

“Gold standard” coupled-cluster study of acetylene pentamers and hexamers via molecular tailoring approach

  • Anuja P. Rahalkar
  • Brijesh K. Mishra
  • V. Ramanathan
  • Shridhar R. Gadre
Regular Article

Abstract

Due to high scaling order of MP2 and CCSD(T) methods, it is either difficult or at times even impossible to treat even moderately sized molecular systems with elaborate basis sets such as aug-cc-pVXZ (X = D, T, Q). In the present work, several structures of acetylene pentamers and hexamers are explored at MP2 and CCSD(T) levels of theory as prototypical examples of clusters bound by CH···π interactions. To enable this investigation, fragment-based method Molecular Tailoring Approach (MTA) is employed. It is shown that these acetylene assemblies can be treated with substantial reduction in computational resources and time, yet retaining a sub-millihartree accuracy in the energy. Further, using standard extrapolation methodologies, stabilization energies at the complete basis set limit of the acetylene clusters under consideration are determined at MP2 and CCSD(T) levels of theory. To test out the feasibility of treating a large cluster at MP2 level, a demonstrative calculation on a dodecamer of acetylene is reported.

Keywords

Møller-Plesset second-order perturbation (MP2) theory Coupled-cluster with single and double and perturbative triple excitations (CCSD(T)) Acetylene Molecular clusters Complete basis set Molecular tailoring approach (MTA) 

Notes

Acknowledgments

APR is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for award of research fellowship and Center for Development of Advanced Computing (C-DAC), Pune, for computational resources. Department of Science and Technology (DST), New Delhi, is gratefully acknowledged by SRG for the award of J. C. Bose fellowship.

References

  1. 1.
    Chenoweth K, Dykstra CD (2003) Theor Chem Acc 110:100CrossRefGoogle Scholar
  2. 2.
    Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145CrossRefGoogle Scholar
  3. 3.
    Chourasia M, Sastry GM, Sastry GN (2011) Int J Biol Macromol 48:540CrossRefGoogle Scholar
  4. 4.
    Burley SK, Petsko GA (1985) Science 229:23CrossRefGoogle Scholar
  5. 5.
    Nishio M, Hirota M, Umezawa Y (1998) The CH/π interaction: evidence, nature, and consequences. Wiley, New YorkGoogle Scholar
  6. 6.
    Jones PG, Dix I, Hopf H (2007) Acta Cryst C 63:468CrossRefGoogle Scholar
  7. 7.
    Řezáč J, Fanfrlík J, Salahub D, Hobza P (2009) J Chem Theory Comput 5:1749CrossRefGoogle Scholar
  8. 8.
    Vaupel S, Brutschy B, Tarakeshwar P, Kim KS (2006) J Am Chem Soc 128:5416CrossRefGoogle Scholar
  9. 9.
    Singh NJ, Lee HM, Hwang I-C, Kim KS (2007) Supramol Chem 19:321CrossRefGoogle Scholar
  10. 10.
    Lee JY, Hong BH, Kim WY, Min SK, Kim Y, Jouravlev MV, Bose R, Kim KS, Hwang I-C, Kaufman LJ, Wong CW, Kim P, Kim KS (2009) Nature 460:498CrossRefGoogle Scholar
  11. 11.
    Karaminkov R, Chervenkov S, Neusser HJ, Ramanathan V, Chakraborty T (2009) J Chem Phys 130:034301CrossRefGoogle Scholar
  12. 12.
    Kenta S, Fujii A, Mikami N, Tsuzuki S (2007) J Phys Chem A 111:753CrossRefGoogle Scholar
  13. 13.
    Sinnokrot OM, Sherrill DC (2006) J Phys Chem A 110:10656CrossRefGoogle Scholar
  14. 14.
    Mishra BK, Samuel JA, Sathyamurthy N (2010) J Phys Chem A 114:9606CrossRefGoogle Scholar
  15. 15.
    Sundararajan K, Sankaran K, Vishwanathan KS, Kulkarni AD, Gadre SR (2002) J Phys Chem A 106:1504CrossRefGoogle Scholar
  16. 16.
    Karthikeyan S, Lee HM, Kim KS (2010) J Chem Theory Comput 6:3190CrossRefGoogle Scholar
  17. 17.
    Shuler K, Dykstra CE (2000) J Phys Chem A 104:11522CrossRefGoogle Scholar
  18. 18.
    Ohshima Y, Matsumoto Y, Takami M, Kuchitsu K (1988) Chem Phys Lett 147:1CrossRefGoogle Scholar
  19. 19.
    Bone RGA, Amos RD, Handy NC (1990) J Chem Soc Faraday Trans 86:1931CrossRefGoogle Scholar
  20. 20.
    Yu J, Shujun S, Bloor JE (1990) J Phys Chem 94:5589CrossRefGoogle Scholar
  21. 21.
    Takeuchi H (2010) J Comp Chem 31:1699Google Scholar
  22. 22.
    Garrison SL, Sandler SI (2004) J Phys Chem B 108:18972CrossRefGoogle Scholar
  23. 23.
    Mishra BK, Sathyamurthy N (2005) J Phys Chem A 109:6CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157CrossRefGoogle Scholar
  25. 25.
    Goerigk L, Grimme S (2010) J Chem Theory Comput 6:107CrossRefGoogle Scholar
  26. 26.
    Halkier A, Klopper W, Helgaker T, Jørgensen P, Taylor PR (1999) J Chem Phys 111:9157CrossRefGoogle Scholar
  27. 27.
    Shipman LL, Christoffersen RE (1972) Proc Nat Acad Sci USA 69:3301CrossRefGoogle Scholar
  28. 28.
    Yang W (1991) Phys Rev Lett 66:1432Google Scholar
  29. 29.
    Gadre SR, Shirsat RN, Limaye AC (1994) J Phys Chem 98:9165CrossRefGoogle Scholar
  30. 30.
    Babu K, Gadre SR (2003) J Comput Chem 24:484CrossRefGoogle Scholar
  31. 31.
    Ganesh V, Dongare RK, Balanarayan P, Gadre SR (2006) J Chem Phys 125:104109CrossRefGoogle Scholar
  32. 32.
    Rahalkar AP, Ganesh V, Gadre SR (2008) J Chem Phys 129:234101CrossRefGoogle Scholar
  33. 33.
    Rahalkar AP, Gadre SR (2011) J Chem Sci (in Press)Google Scholar
  34. 34.
    Kitaura K, Ikeo E, Asada T, Nakano T, Ubeyasi M (1999) Chem Phys Lett 313:701CrossRefGoogle Scholar
  35. 35.
    Fedorov DG, Jensen JH, Deka RC, Kitaura K (2008) J Phys Chem A 111:6904CrossRefGoogle Scholar
  36. 36.
    Kobayashi M, Akama T, Nakai H (2006) J Chem Phys 125:204106CrossRefGoogle Scholar
  37. 37.
    Deev V, Collins MA (2005) J Chem Phys 122:154102CrossRefGoogle Scholar
  38. 38.
    Zhang DW, Zhang JZH (2003) J Chem Phys 119:3599CrossRefGoogle Scholar
  39. 39.
    Li W, Li S (2004) J Chem Phys 121:6649CrossRefGoogle Scholar
  40. 40.
    Rahalkar AP, Katouda M, Gadre SR, Nagase S (2010) J Comput Chem 31:2405Google Scholar
  41. 41.
    Rahalkar AP, Yeole SD, Ganesh V, Gadre SR (2011) In: Zaleśny R, Papadopoulos MG, Mezey PG, Leszczynski J (eds) Linear scaling techniques in computational chemistry and physics. Springer, New York, p 199Google Scholar
  42. 42.
    Yeole SD, Gadre SR (2010) J Chem Phys 132:094102CrossRefGoogle Scholar
  43. 43.
    Elango M, Subramanian V, Rahalkar AP, Gadre SR, Sathyaurthy N (2008) J Phys Chem A 112:7699CrossRefGoogle Scholar
  44. 44.
    Mahadevi AS, Rahalkar AP, Gadre SR, Sastry GN (2010) J Chem Phys 133:164308CrossRefGoogle Scholar
  45. 45.
    Gadre SR, Jovan JKV, Rahalkar AP (2010) J Chem Sci 122:1CrossRefGoogle Scholar
  46. 46.
    Limaye AC, Gadre SR (2001) Curr Sci (India) 80:1296Google Scholar
  47. 47.
    The GAUSSIAN 09 package: Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE,Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, FarkasÖ, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1 Gaussian, Inc., WallingfordGoogle Scholar
  48. 48.
    The package MeTA Studio available at: http://code.google.com/p/metastudio/ (See: Ganesh V (2009) J Comp Chem 30:661)
  49. 49.
    The GAMESS package: Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347 For further details: http://www.msg.ameslab.gov/GAMESS/GAMESS.html
  50. 50.
    The CFOUR package: Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau T-C, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, O’Neill DP, Price DR, Prochnow E, Ruud K, Schiffmann F, Schwalbach W, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD and the integral packages MOLECULE (Almlöf J and Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Jensen HJAa, Jørgensen P, and Olsen J), and ECP routines by Mitin AV and van Wüllen CGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anuja P. Rahalkar
    • 1
    • 2
  • Brijesh K. Mishra
    • 3
  • V. Ramanathan
    • 4
  • Shridhar R. Gadre
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyKanpurIndia
  2. 2.Department of ChemistryUniversity of PunePuneIndia
  3. 3.Environmental Chemistry Modeling Laboratory, GR C2 544Swiss Federal Institute of Technology (EPFL)LausanneSwitzerland
  4. 4.3rd Institute of PhysicsUniversity of StuttgartStuttgartGermany

Personalised recommendations