Theoretical Chemistry Accounts

, Volume 130, Issue 4–6, pp 775–788 | Cite as

Molecular orbital concept on spin-flip transport in molecular junctions

wave-packet scattering approach and Green’s function method
  • Tomofumi Tada
  • Takahiro Yamamoto
  • Satoshi Watanabe
Regular Article

Abstract

The spin-dependent electron transport correlated with spin-flip dynamics in a molecular junction was investigated in the wave-packet and Green’s function approaches. The molecular junction adopted in this work is described by a simple one-dimensional tight-binding chain including a localized spin. The spin exchange coupling J between the localized and conduction electron spins was taken into account through the s-d Hamiltonian. The wave-packet simulations showed that the transmission probabilities in both the spin-flip and no-flip processes show large peaks at the eigenvalues of the spin singlet (−3J/4) and triplet (J/4) states, and that, different transmission properties appear at the mid-gap of the two eigenvalues: the spin-flip process shows a moderate decrease, whereas the no-flip process an abrupt drop. Dividing the s-d Hamiltonian into two submatrices and referring to the molecular orbital concept for the coherent electron transport, we found that the moderate decrease in the spin-flip process at the mid-gap is the result of a coherent-and-cooperative contribution from the singlet and triplet states of the conduction and localized electron spins, and that, the abrupt drop in the no-flip process at the mid-gap is mainly caused by the coherent cancellation from the singlet and triplet states. The molecular orbital concept available for the electron transport including spin-flip scattering processes is described in Green’s function method, in analogy to the one derived for the spinless electron transport.

Keywords

Spin-dependent electron transport Spin-flip Molecular junction Wave packet Green’s function Molecular orbital 

References

  1. 1.
    Kane BE (1998) A silicon-based nuclear spin quantum computer. Nature 393:133CrossRefGoogle Scholar
  2. 2.
    Vandersypen LMK, Steffen M, Breyta G, Yannoni CS, Sherwood MH, Chuang IL (2001) Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414:883CrossRefGoogle Scholar
  3. 3.
    Jelezko F, Gaebel T, Popa I, Gruber A, Wrachtrup J (2004) Observation of coherent oscillations in a single electron spin. Phys Rev Lett 92:076401CrossRefGoogle Scholar
  4. 4.
    Xiao M, Martin I, Yablonovitch E, Jiang HW (2004) Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430:435CrossRefGoogle Scholar
  5. 5.
    Childress L, Dutt MVG, Taylor JM, Zibrov AS, Jelezko F, Wrachtrup J, Hemmer PR, Lukin MD (2006) Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314:281CrossRefGoogle Scholar
  6. 6.
    Hanson R, Mendoza FM, Epstein RJ, Awschalom DD (2006) Polarization and readout of coupled single spins in diamond. Phys Rev Lett 97:087601CrossRefGoogle Scholar
  7. 7.
    McCamey DR, Huebl H, Brandt MS, Hutchison WD, McCallum JC, Clark RG, Hamilton AR (2006) Electrically detected magnetic resonance in ion-implanted Si : P nanostructures. Appl Phys Lett 89:182115CrossRefGoogle Scholar
  8. 8.
    Morton JJL, Tyryshkin AM, Brown RM, Shankar S, Lovett BW, Ardavan A, Schenkel T, Haller EE, Ager JW, Lyon SA (2008) Solid-state quantum memory using the 31P nuclear spin. Nature 455:1085CrossRefGoogle Scholar
  9. 9.
    Schlegel C, van Slageren J, Manoli M, Brechin EK, Dressel M (2008) Direct observation of quantum coherence in single-molecule magnets. Phys Rev Lett 101:147203CrossRefGoogle Scholar
  10. 10.
    Tada T (2008) Hyperfine switching triggered by resonant tunneling for the detection of a single nuclear spin qubit. Phys Lett A 372:6690CrossRefGoogle Scholar
  11. 11.
    Smeltzer B, McIntyre J, Childress L (2009) Robust control of individual nuclear spins in diamond. Phys Rev A 80:050302CrossRefGoogle Scholar
  12. 12.
    Loth S, von Bergmann K, Ternes M, Otte AF, Lutz CP, Heinrich AJ (2010) Controlling the state of quantum spins with electric currents. Nat Phys 6:340CrossRefGoogle Scholar
  13. 13.
    Wang X, Bayat A, Schirmer SG, Bose S (2010) Robust entanglement in antiferromagnetic Heisenberg chains by single-spin optimal control. Phys Rev A 81:032312CrossRefGoogle Scholar
  14. 14.
    Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722CrossRefGoogle Scholar
  15. 15.
    Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Kondo resonance in a single-molecule transistor. Nature 417:725CrossRefGoogle Scholar
  16. 16.
    Heinrich AJ, Gupta JA, Lutz CP, Eigler DM (2004) Single-atom spin-flip spectroscopy. Science 306:466CrossRefGoogle Scholar
  17. 17.
    Wahl P, Diekhöner L, Wittich G, Vitali L, Schneider MA, Kern K (2005) Kondo effect of molecular complexes at surfaces: ligand control of the local spin coupling. Phys Rev Lett 95:166601CrossRefGoogle Scholar
  18. 18.
    Zhao A, Li Q, Chen L, Xiang H, Wang W, Pan S, Wang B, Xiao X, Yang J, Hou JG, Zhu Q (2005) Controlling the kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309:1542CrossRefGoogle Scholar
  19. 19.
    Iancu V, Deshpande A, Hla S-W (2006) Manipulating kondo temperature via single molecule switching. Nano Lett 6:820CrossRefGoogle Scholar
  20. 20.
    Parks JJ, Champagne AR, Hutchison GR, Flores-Torres S, Abruña HD, Ralph DC (2007) Tuning the kondo effect with a mechanically controllable break junction. Phys Rev Lett 99:026601CrossRefGoogle Scholar
  21. 21.
    Gao L, Ji W, Hu YB, Cheng ZH, Deng ZT, Liu Q, Jiang N, Lin X, Guo W, Du SX, Hofer WA, Xie XC, Gao H-J (2007) Site-specific kondo effect at ambient temperatures in Iron-based molecules. Phys Rev Lett 99:106402CrossRefGoogle Scholar
  22. 22.
    Chen X, Fu Y-S, Ji S-H, Zhang T, Cheng P, Ma X-C, Zou X-L, Duan W-H, Jia J-F, Xue Q-K (2008) Probing superexchange interaction in molecular magnets by spin-flip spectroscopy and microscopy. Phys Rev Lett 101:197208CrossRefGoogle Scholar
  23. 23.
    Sugawara T, Minamoto M, Matsushita MM, Nickels P, Komiyama S (2008) Cotunneling current affected by spin-polarized wire molecules in networked gold nanoparticles. Phys Rev B 77:235316CrossRefGoogle Scholar
  24. 24.
    Tsukahara N, Noto K, Ohara M, Shiraki S, Takagi N, Takata Y, Miyawaki J, Taguchi M, Chainani A, Shin S, Kawai M (2009) Adsorption-induced switching of magnetic anisotropy in a single Iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys Rev Lett 102:167203CrossRefGoogle Scholar
  25. 25.
    Xue Y, Ratner MA (2003) Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure. Phys Rev B 68:115407CrossRefGoogle Scholar
  26. 26.
    Stokbro K, Taylor J, Brandbyge M, MozosJ-L Ordejón P (2003) Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds. Comput Mater Sci 27:151CrossRefGoogle Scholar
  27. 27.
    Nara J, Kino H, Kobayashi N, Tsukada M, Ohno T (2003) Theoretical investigation of contact effects in conductance of single organic molecule. Thin Solid Films 438(439):221CrossRefGoogle Scholar
  28. 28.
    Hu Y, Zhu Y, Gao H, Guo H (2005) Conductance of an ensemble of molecular wires: a statistical analysis. Phys Rev Lett 95:156803CrossRefGoogle Scholar
  29. 29.
    Ke S-H, Baranger HU, Yang W (2005) Contact atomic structure and electron transport through molecules. J Chem Phys 122:074704CrossRefGoogle Scholar
  30. 30.
    Tanibayashi S, Tada T, Watanabe S, Sekino H (2006) Effects of energetic stability in transport measurements of single benzene-dithiolate by the STM break junction technique. Chem Phys Lett 428:367CrossRefGoogle Scholar
  31. 31.
    Andrews DQ, Van Duyne RP, Ratner MA (2008) Stochastic modulation in molecular electronic transport junctions: molecular dynamics coupled with charge transport calculations. Nano Lett 8:1120CrossRefGoogle Scholar
  32. 32.
    Tawara A, Tada T, Watanabe S (2009) Electrostatic and dynamical effects of an aqueous solution on the zero-bias conductance of a single molecule: a first-principles study. Phys Rev B 80:073409CrossRefGoogle Scholar
  33. 33.
    Monturet S, Lorente N (2008) Inelastic effects in electron transport studied with wave-packet propagation. Phys Rev B 78:035445CrossRefGoogle Scholar
  34. 34.
    Ishii H, Kobayashi N, Hirose K (2010) Order-N electron transport calculations from ballistic to diffusive regimes by a time-dependent wave-packet diffusion method: application to transport properties of carbon nanotubes. Phys Rev B 82:085435CrossRefGoogle Scholar
  35. 35.
    Troisi A, Orlandi G (2006) Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. Phys Rev Lett 96:086601CrossRefGoogle Scholar
  36. 36.
    Kondo N, Yamamoto T, Watanabe K (2006) Phonon wavepacket scattering dynamics in defective carbon nanotubes. Jpn J Appl Phys 45:L963CrossRefGoogle Scholar
  37. 37.
    Yao Y, Zhao H, Moore JE, Wu C-Q (2008) Controllable spin-current blockade in a Hubbard chain. Phys Rev B 78:193105CrossRefGoogle Scholar
  38. 38.
    Bruus H, Flensberg K (2004) Many-body quantum theory in condensed matter physics, chapter 10. Oxford University Press, OxfordGoogle Scholar
  39. 39.
    Tada T, Yoshizawa K (2002) Quantum transport effects in nanosized graphite sheets. ChemPhysChem 3:1035CrossRefGoogle Scholar
  40. 40.
    Kondo J (1964) Resistance minimum in dilute magnetic alloys. Prog Theor Phys 32:37CrossRefGoogle Scholar
  41. 41.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in fortran 77, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  42. 42.
    Schiff LI (1968) Quantum mechanics, 3rd edn. McGraw-Hill, New York, pp 62–64Google Scholar
  43. 43.
    Caroli C, Combescot R, Nozieres P, Saint-James D (1971) Direct calculation of the tunneling current. J Phys C 4:916CrossRefGoogle Scholar
  44. 44.
    Datta S (1995) Electronic transport in mesoscopic systems, chapters 2 and 3. Cambridge University Press, CambridgeGoogle Scholar
  45. 45.
    Tada T, Yoshizawa K (2003) Quantum transport effects in nanosized graphite sheets. II. Enhanced quantum transport effects by Heteroatoms. J Phys Chem B 107:8789CrossRefGoogle Scholar
  46. 46.
    Tada T, Kondo M, Yoshizawa K (2003) Theoretical measurements of conductance in an (AT)12 DNA molecule. ChemPhysChem 4:1256CrossRefGoogle Scholar
  47. 47.
    Tada T, Yoshizawa K (2004) Reverse exponential decay of electrical transmission in nanosized graphite sheets. J Phys Chem B 108:7565CrossRefGoogle Scholar
  48. 48.
    Kondo M, Tada T, Yoshizawa K (2004) Wire-length dependence of the conductance of oligo(p-phenylene) dithiolate wires: a consideration from molecular orbitals. J Phys Chem A 108:9143CrossRefGoogle Scholar
  49. 49.
    Tada T, Nozaki D, Kondo M, Hamayama S, Yoshizawa K (2004) Oscillation of conductance in molecular junctions of carbon ladder compounds. J Am Chem Soc 126:14182CrossRefGoogle Scholar
  50. 50.
    Tada T, Hamayama S, Kondo M, Yoshizawa K (2005) Quantum transport effects in copper(II) phthalocyanine sandwiched between gold nanoelectrodes. J Phys Chem B 109:12443CrossRefGoogle Scholar
  51. 51.
    Kondo M, Tada T, Yoshizawa K (2005) A theoretical measurement of the quantum transport through an optical molecular switch. Chem Phys Lett 412:55CrossRefGoogle Scholar
  52. 52.
    Yoshizawa K, Tada T, Staykov A (2008) Orbital views of the electron transport in molecular devices. J Am Chem Soc 130:9406CrossRefGoogle Scholar
  53. 53.
    Shiba H (1996) Kotai no denshiron, chapter 4. Maruzen, TokyoGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tomofumi Tada
    • 1
  • Takahiro Yamamoto
    • 2
  • Satoshi Watanabe
    • 3
  1. 1.Global COE for Mechanical System Innovation (GMSI), Department of Materials EngineeringUniversity of TokyoTokyoJapan
  2. 2.Department of Liberal Arts, Faculty of EngineeringTokyo University of ScienceTokyoJapan
  3. 3.Department of Materials EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations