Theoretical Chemistry Accounts

, Volume 130, Issue 2–3, pp 475–482 | Cite as

Binding energy of gas molecule with two pyrazine molecules as organic linker in metal–organic framework: its theoretical evaluation and understanding of determining factors

  • Milind M. Deshmukh
  • Shigeyoshi SakakiEmail author
Regular Article


We explored the interactions of gas molecules such as H2, CH4, C2H4, C2H6, CO2, and CS2 sandwiched by two pyrazine (Pz) molecules, which were employed as a model of organic linker in the Hofmann-type metal–organic framework (MOF). The MP2.5/aug-cc-pVTZ method was employed here, because this method presents almost the same binding energy as that calculated by the CCSD(T)/aug-cc-pVDZ with MP2.5-evaluated basis set extension effects to aug-cc-pVTZ basis set. The binding energy of the gas molecule increases in the order H2 < CH4 < CO2 < C2H4 ≈ C2H6 < CS2. The energy decomposition analysis of the interaction energy indicates that the electrostatic term presents the largest contribution to the interaction energy at the Hartree–Fock level. However, the dispersion interaction provides dominant contribution to the total binding energy at correlated level. We newly found a linear correlation between the z-component of polarizability of gas molecules and dispersion energy, where the z-axis was taken to be perpendicular to two Pz rings. These results are useful for understanding and predicting the binding energy of the gas molecule with the organic linkers of MOF.


Metal–organic framework Binding energy Dispersion interaction Molecular polarizability 



This work is financially supported by the Ministry of Education, Culture, Science, Sport, and Technology through Grant-in-Aids of Specially Promoted Research (No. 22000009) and Grand Challenge Project (IMS). We are also thankful to the computational facility at the Institute of Molecular Sciences, Okazaki, Japan.

Supplementary material

214_2011_1025_MOESM1_ESM.doc (3.6 mb)
Supplementary Information: The PES plots along x-, y-, and z-axes for Pz–gas–Pz four different systems are given in the Supplementary Fig. S1. A correlation between the electrostatic energy and the z-component of quadrupole moment is given in Supplementary Fig. S2. Correlations between the ES term from EDA and the electrostatic interaction evaluated with ESP charges are provided in Supplementary Fig. S3 and Table S1. Supplementary material 1 (DOC 3,711 kb)


  1. 1.
    Czaja AU, Trukhan N, Muller U (2009) Chem Soc Rev 38:1284CrossRefGoogle Scholar
  2. 2.
    Kitagawa S, Matsuda S (2007) Coord Chem Rev 251:2490CrossRefGoogle Scholar
  3. 3.
    James SL (2003) Chem Soc Rev 32:276CrossRefGoogle Scholar
  4. 4.
    Morris RE, Wheatley PS (2008) Angew Chem Int Ed 47:4966CrossRefGoogle Scholar
  5. 5.
    Murray LJ, Dincă M, Long JR (2009) Chem Soc Rev 38:1294CrossRefGoogle Scholar
  6. 6.
    Britt D, Tranchemontagne D, Yaghi OM (2008) Proc Natl Acad Sci USA 105:11623CrossRefGoogle Scholar
  7. 7.
    Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki F (2005) Science 309:204CrossRefGoogle Scholar
  8. 8.
    Dietzel PDC, Johnsen RE, Fjellvag H, Bordiga S, Groppo E, Chavanc S, Blom R (2008) Chem Comm 5125Google Scholar
  9. 9.
    Dinca M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) J Am Chem Soc 128:16876CrossRefGoogle Scholar
  10. 10.
    Cheon YE, Suh MP (2009) Chem Comm 2296Google Scholar
  11. 11.
    Belof JL, Stern C, Eddaoudi M, Space B (2007) J Am Chem Soc 129:15202CrossRefGoogle Scholar
  12. 12.
    Iremonger SS, Southon PD, Kepert CJ (2008) Dalton Trans 6103Google Scholar
  13. 13.
    Mulfort KL, Hupp JT (2007) J Am Chem Soc 129:9604CrossRefGoogle Scholar
  14. 14.
    Dalrymple SA, Shimizu GKH (2007) J Am Chem Soc 129:12114CrossRefGoogle Scholar
  15. 15.
    Luo J, Xu H, Liu Y, Zhao Y, Daemen LL, Brown C, Timofeeva TV, Ma S, Zhou HC (2008) J Am Chem Soc 130:9626CrossRefGoogle Scholar
  16. 16.
    Miller SR, Pearce GM, Wright PA, Bonino F, Chavan S, Bordiga S, Margiolaki I, Guillou N, Férey G, Bourrelly S, Llewellyn PL (2008) J Am Chem Soc 130:15967CrossRefGoogle Scholar
  17. 17.
    Guo H, Zhu G, Hewitt IJ, Qiu S (2009) J Am Chem Soc 131:1646CrossRefGoogle Scholar
  18. 18.
    Wang Z, Chen G, Ding K (2009) Chem Rev 109:322CrossRefGoogle Scholar
  19. 19.
    Farrusseng D, Aguado S, Pinel C (2009) Angew Chem Int Ed 48:7502CrossRefGoogle Scholar
  20. 20.
    Ohara K, Kawano M, Inokuma Y, Fujita M (2010) J Am Chem Soc 132:30CrossRefGoogle Scholar
  21. 21.
    Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Acc Chem Res 34:319CrossRefGoogle Scholar
  22. 22.
    Rowsell JLC, Yaghi OM (2004) Microporous Mesoporous Mater 73:3CrossRefGoogle Scholar
  23. 23.
    Férey G (2007) Stud Surf Sci Catal 170:66CrossRefGoogle Scholar
  24. 24.
    Férey G (2008) Chem Soc Rev 37:191CrossRefGoogle Scholar
  25. 25.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469CrossRefGoogle Scholar
  26. 26.
    Chae HK, Kim J, Friedrichs OD, O’Keefe M, Yaghi OM (2003) Angew Chem Int Ed 42:3907CrossRefGoogle Scholar
  27. 27.
    Rosi NL, Eddaoudi M, Kim J, O’Keeffe M, Yaghi OM (2002) Cryst Eng Comm 401Google Scholar
  28. 28.
    Vaidhyanathan R, Iremonger SS, Dawson KW, Shimizu GKH (2009) Chem Comm 5230Google Scholar
  29. 29.
    Ohba M, Yoneda K, Agustí G, Muñoz MC, Gaspar AB, Real JA, Yamasaki M, Ando H, Nakao Y, Sakaki S, Kitagawa S (2009) Angew Chem Int Ed 48:4767CrossRefGoogle Scholar
  30. 30.
    Sagara T, Klassen J, Ganz E (2004) J Chem Phys 121:12543CrossRefGoogle Scholar
  31. 31.
    Sagara T, Klassen J, Ortony J, Ganz E (2005) J Chem Phys 123:14701CrossRefGoogle Scholar
  32. 32.
    Lee TB, Kim D, Jung DH, Choi SB, Yoon JH, Kim J, Choi K, Choi S-H (2007) Catal Today 120:330CrossRefGoogle Scholar
  33. 33.
    Raveendran P, Ikushima Y, Wallen SL (2005) Acc Chem Res 38:478CrossRefGoogle Scholar
  34. 34.
    Nelson MR, Borkman RF (1998) J Phys Chem A 102:7860CrossRefGoogle Scholar
  35. 35.
    Raveendran P, Wallen SL (2002) J Am Chem Soc 124:12590CrossRefGoogle Scholar
  36. 36.
    Chakraborty AK, Bischoff KB, Astarita G, Damewood JR Jr (1987) J Am Chem Soc 110:6947CrossRefGoogle Scholar
  37. 37.
    Meredith JC, Johnston KP, Seminario JM, Kazarian SG, Eckert CA (1996) J Phys Chem 100:10837CrossRefGoogle Scholar
  38. 38.
    Jamróz MH, Dobrowolski JC, Borowiak MA (1997) J Mol Struct 404:105CrossRefGoogle Scholar
  39. 39.
    Pianwanit A, Kritayakornupong C, Vongachariya A, Selphusit N, Ploymeerusmee T, Remsungnen T, Nuntasri D, Fritzsche S, Hannongbua S (2008) Chem Phys 349:77CrossRefGoogle Scholar
  40. 40.
    Vogiatzis KD, Mavrandonakis A, Klopper W, Froudakis GE (2009) Chem Phys Chem 10:374CrossRefGoogle Scholar
  41. 41.
    Grimme S (2004) J Comput Chem 25:1463CrossRefGoogle Scholar
  42. 42.
    Grimme S (2007) J Comput Chem 27:1787CrossRefGoogle Scholar
  43. 43.
    Ochterski JW, Petersson GA, Montgomery JA Jr (1996) J Chem Phys 104:2598CrossRefGoogle Scholar
  44. 44.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  45. 45.
    Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Chem Rev 110:5023 and references thereinGoogle Scholar
  46. 46.
    Boys SF, Barnardy F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  47. 47.
    Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325CrossRefGoogle Scholar
  48. 48.
    Stevens WJ, Fink WH (1987) Chem Phys Lett 139:15CrossRefGoogle Scholar
  49. 49.
    Chen W, Gordon MS (1996) J Phys Chem 100:14316CrossRefGoogle Scholar
  50. 50.
    Frisch MJ et al. (2004) Gaussian 03, Gaussian Inc., 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492Google Scholar
  51. 51.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347CrossRefGoogle Scholar
  52. 52.
    Pedulla JM, Vila F, Jordan KD (1996) J Chem Phys 105:11091CrossRefGoogle Scholar
  53. 53.
    Sakaki S, Kato K, Miyazaki T, Musashi Y, Ohkuba K, Ihara H, Hirayama C (1993) J Chem Soc Faraday Trans 89:659CrossRefGoogle Scholar
  54. 54.
    Li J-R, Kuppler RJ, Zhou H-C (2009) Chem Soc Rev 38:1477 and references thereinGoogle Scholar
  55. 55.
    Landolt-Bornstein ND (1951) Atom und Molekularphysik, vol 1. Springer, West Berlin, p 511Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Fukui Institute of Fundamental ChemistryKyoto UniversityKyotoJapan

Personalised recommendations