Advertisement

Theoretical Chemistry Accounts

, Volume 130, Issue 2–3, pp 411–417 | Cite as

Linear-scaling divide-and-conquer second-order Møller–Plesset perturbation calculation for open-shell systems: implementation and application

  • Takeshi Yoshikawa
  • Masato Kobayashi
  • Hiromi NakaiEmail author
Regular Article

Abstract

We have developed the spin-unrestricted divide-and-conquer (DC)-based linear-scaling self-consistent field method for treating open-shell systems (Kobayashi et al. in Chem Phys Lett 500:172, 2010). Because the method does not require the position of excess spins or charges, it made the treatment of large spin-delocalized systems tractable. The present study extends the DC-based unrestricted open-shell scheme to the correlated second-order Møller–Plesset perturbation (MP2) theory. Numerical applications to polyene cations demonstrate that the present method gives highly accurate results with less computational costs even for spin-delocalized systems.

Keywords

Linear-scaling computation Open-shell system Unrestricted orbital Electron correlation MP2 theory 

Notes

Acknowledgments

Some of the present calculations were performed at the Research Center for Computational Science (RCCS), Okazaki Research Facilities, National Institutes of Natural Sciences (NINS). This study was supported in part by Grants-in-Aid for Challenging Exploratory Research “KAKENHI 22655008” and for Young Scientists (B) “KAKENHI 22750016” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; by the Nanoscience Program in the Next Generation Super Computing Project of the MEXT; by the Global Center Of Excellence (COE) “Practical Chemical Wisdom” from the MEXT; and by a project research grant for “Practical in-silico chemistry for material design” from the Research Institute for Science and Engineering (RISE), Waseda University.

References

  1. 1.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  2. 2.
    Pulay P, Saebø S (1986) Theor Chim Acta 69:357CrossRefGoogle Scholar
  3. 3.
    Saebø S, Pulay P (1993) Annu Rev Phys Chem 44:213CrossRefGoogle Scholar
  4. 4.
    Saebø S, Pulay P (2001) J Chem Phys 115:3975CrossRefGoogle Scholar
  5. 5.
    Schütz M, Hetzer G, Werner H-J (1999) J Chem Phys 111:5691CrossRefGoogle Scholar
  6. 6.
    Maslen PE, Head-Gordon M (1998) Chem Phys Lett 283:102CrossRefGoogle Scholar
  7. 7.
    Nielsen IMB, Janssen CL (2007) J Chem Theory Comput 3:71CrossRefGoogle Scholar
  8. 8.
    Almlöf J (1991) Chem Phys Lett 181:319CrossRefGoogle Scholar
  9. 9.
    Häser M (1993) Theor Chim Acta 87:147CrossRefGoogle Scholar
  10. 10.
    Ayala PY, Scuseria GE (1999) J Chem Phys 110:3660CrossRefGoogle Scholar
  11. 11.
    Scuseria GE, Ayala PY (1999) J Chem Phys 111:8330CrossRefGoogle Scholar
  12. 12.
    Lambrecht DS, Doser B, Ochsenfeld C (2005) J Chem Phys 123:184102CrossRefGoogle Scholar
  13. 13.
    Surján PR (2005) Chem Phys Lett 406:318CrossRefGoogle Scholar
  14. 14.
    Kobayashi M, Nakai H (2006) Chem Phys Lett 420:250CrossRefGoogle Scholar
  15. 15.
    Doser B, Lambrecht DS, Kussmann J, Ochsenfeld C (2009) J Chem Phys 130:064107CrossRefGoogle Scholar
  16. 16.
    Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359CrossRefGoogle Scholar
  17. 17.
    Rendell AP, Lee TJ (1994) J Chem Phys 101:400CrossRefGoogle Scholar
  18. 18.
    Koch H, Sánchez de Merás A, Pedersen TB (2003) J Chem Phys 118:9481CrossRefGoogle Scholar
  19. 19.
    Pedersen TB, Sánchez de Merás AMJ, Koch H (2004) J Chem Phys 120:8887CrossRefGoogle Scholar
  20. 20.
    Fedorov DG, Kitaura K (2004) J Chem Phys 121:2483CrossRefGoogle Scholar
  21. 21.
    Mochizuki Y, Koikegami S, Nakano T, Amari S, Kitaura K (2004) Chem Phys Lett 396:473CrossRefGoogle Scholar
  22. 22.
    Ishikawa T, Kuwata K (2009) Chem Phys Lett 474:195CrossRefGoogle Scholar
  23. 23.
    Okiyama Y, Nakano T, Yamashita K, Mochizuki Y, Taguchi N (2010) Chem Phys Lett 490:84CrossRefGoogle Scholar
  24. 24.
    Babu K, Gadre SR (2003) J Comput Chem 24:484CrossRefGoogle Scholar
  25. 25.
    Ganesh V, Dongare RK, Balanarayan P, Gadre SR (2006) J Chem Phys 125:104109CrossRefGoogle Scholar
  26. 26.
    Rahalkar AP, Katouda M, Gadre SR, Nagase S (2010) J Comput Chem 31:2405Google Scholar
  27. 27.
    Friedrich J, Dolg M (2008) J Chem Phys 129:244105CrossRefGoogle Scholar
  28. 28.
    Friedrich J, Dolg M (2009) J Chem Theory Comput 5:287CrossRefGoogle Scholar
  29. 29.
    Kobayashi M, Akama T, Nakai H (2006) J Chem Phys 125:204106CrossRefGoogle Scholar
  30. 30.
    Kobayashi M, Imamura Y, Nakai H (2007) J Chem Phys 127:074103CrossRefGoogle Scholar
  31. 31.
    Kobayashi M, Nakai H (2009) Int J Quantum Chem 109:2227CrossRefGoogle Scholar
  32. 32.
    Ishimura K, Pulay P, Nagase S (2006) J Comput Chem 27:407CrossRefGoogle Scholar
  33. 33.
    Ishimura K, Pulay P, Nagase S (2007) J Comput Chem 28:2034CrossRefGoogle Scholar
  34. 34.
    Katouda M, Nagase S (2009) Int J Quantum Chem 109:2121CrossRefGoogle Scholar
  35. 35.
    Katouda M, Nagase S (2010) J Chem Phys 133:184103CrossRefGoogle Scholar
  36. 36.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  37. 37.
    Fedorov DG, Kitaura K (2007) J Phys Chem A 111:6904CrossRefGoogle Scholar
  38. 38.
    Kobayashi M, Akama T, Nakai H (2009) J Comput Chem Jpn 8:1CrossRefGoogle Scholar
  39. 39.
    Kobayashi M, Nakai H (2011) Divide-and-conquer approaches to quantum chemistry: theory and implementation. In: Papadopoulos MG, Zalesny R, Mezey PG, Leszczynski J (eds) Linear-scaling techniques in computational chemistry and physics. Springer, Berlin, pp 97–127CrossRefGoogle Scholar
  40. 40.
    Yang W (1991) Phys Rev Lett 66:1438CrossRefGoogle Scholar
  41. 41.
    Yang W, Lee TS (1995) J Chem Phys 103:5674CrossRefGoogle Scholar
  42. 42.
    Akama T, Kobayashi M, Nakai H (2007) J Comput Chem 28:2003CrossRefGoogle Scholar
  43. 43.
    Akama T, Fujii A, Kobayashi M, Nakai H (2007) Mol Phys 105:2799CrossRefGoogle Scholar
  44. 44.
    Kobayashi M, Kunisada T, Akama T, Sakura D, Nakai H (2011) J Chem Phys 134:034105CrossRefGoogle Scholar
  45. 45.
    Touma T, Kobayashi M, Nakai H (2010) Chem Phys Lett 485:247CrossRefGoogle Scholar
  46. 46.
    Touma T, Kobayashi M, Nakai H (2011) Theor Chem Acc. doi: 10.1007/s00214-011-0964-2
  47. 47.
    He X, Merz KM Jr (2010) J Chem Theory Comput 6:405CrossRefGoogle Scholar
  48. 48.
    Kobayashi M, Nakai H (2008) J Chem Phys 129:044103CrossRefGoogle Scholar
  49. 49.
    Kobayashi M, Nakai H (2009) J Chem Phys 131:114108CrossRefGoogle Scholar
  50. 50.
    Nakai H (2002) Chem Phys Lett 363:73CrossRefGoogle Scholar
  51. 51.
    Katouda M, Kobayashi M, Nakai H, Nagase S (2011) J Comput Chem. doi: 10.1002/jcc.21855
  52. 52.
    Kobayashi M, Yoshikawa T, Nakai H (2010) Chem Phys Lett 500:172CrossRefGoogle Scholar
  53. 53.
    Pruitt SR, Fedorov DG, Kitaura K, Gordon MS (2010) J Chem Theory Comput 6:1CrossRefGoogle Scholar
  54. 54.
    Advance/BioStation version 3.2, Advance Soft, TokyoGoogle Scholar
  55. 55.
    Korchowiec J, Gu FL, Aoki Y (2005) Int J Quantum Chem 105:875CrossRefGoogle Scholar
  56. 56.
    Orimoto Y, Gu FL, Korchowiec J, Imamura A, Aoki Y (2010) Theor Chem Acc 125:493CrossRefGoogle Scholar
  57. 57.
    Friedrich J, Hanrath M, Dolg M (2008) J Phys Chem A 112:8762CrossRefGoogle Scholar
  58. 58.
    Schlegel HB (1986) J Chem Phys 84:4530CrossRefGoogle Scholar
  59. 59.
    Krylov AI (2000) J Chem Phys 113:6052CrossRefGoogle Scholar
  60. 60.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213CrossRefGoogle Scholar
  61. 61.
    Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657CrossRefGoogle Scholar
  62. 62.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257CrossRefGoogle Scholar
  63. 63.
    Krishman R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Takeshi Yoshikawa
    • 1
  • Masato Kobayashi
    • 1
    • 2
  • Hiromi Nakai
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Chemistry and Biochemistry, School of Advanced Science and EngineeringWaseda UniversityTokyoJapan
  2. 2.Department of Theoretical and Computational Molecular ScienceInstitute for Molecular ScienceOkazakiJapan
  3. 3.Research Institute for Science and EngineeringWaseda UniversityTokyoJapan
  4. 4.CREST, Japan Science and Technology AgencyTokyoJapan

Personalised recommendations