Skip to main content
Log in

Incipient structural and vibrational relaxation process of photolyzed carbonmonoxy myoglobin: statistical analysis by perturbation ensemble molecular dynamics method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The incipient structural and vibrational energy relaxation process of photolyzed carbonmonoxy myoglobin was analyzed by the perturbation ensemble molecular dynamics (PEMD) method, in which many pairs of perturbed and unperturbed MD simulations are executed for ensemble-averaging to obtain statistically significant results by canceling out thermal fluctuations. First, we have shown that the experimentally reported anisotropic expansion can be detected within a picosecond after photolysis. The good agreement between the experimental and computational results indicates that the PEMD method can predict legitimately those changes driven by perturbations even if the changes might be subtle and smaller than thermal fluctuations. Second, the structural relaxation including the “clamshell rotation” in E and F helices was successfully analyzed. The high time resolution analysis has clarified the incipient structural dynamics on a subpicosecond timescale: the clamshell rotation starts at His64, Val68, and His93 following both the heme doming and the dissociated CO ligand collision. Third, the vibrational energy relaxation from the heme to the globin matrix is elucidated not only temporally but also spatially. This is the first “thorough” report of the spacetime-resolved excess kinetic energy redistribution of photolyzed MbCO in the globin matrix with a statistically significant precision, ±1 K. The incipient anisotropic vibrational relaxation occurs clearly within a picosecond in the direction perpendicular to the heme plane by the “through-bond” and “through-projectile” pathways, and the isotropic relaxation then follows by the “through-space” pathway. Finally, it is concluded that the PEMD method is a powerful tool to understand the incipient relaxation process driven by the perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Leitner DM, Straub JE (2009) Proteins: energy, heat and signal flow (computation in Chemistry). CRC Press, Boca Raton

    Google Scholar 

  2. Takayanagi M, Okumura H, Nagaoka M (2007) J Phys Chem B 111:864

    Article  CAS  Google Scholar 

  3. Takayanagi M, Iwahashi C, Nagaoka M (2010) J Phys Chem B 114:12340

    Article  CAS  Google Scholar 

  4. Goodno GD, Astinov V, Miller RJD (1999) J Phys Chem A 103:10630

    Article  CAS  Google Scholar 

  5. Kachalova GS, Popov AN, Bartunik HD (1999) Science 284:473

    Article  CAS  Google Scholar 

  6. Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN Jr, Wulff M, Anfinrud PA (2003) Science 300:1944

    Article  CAS  Google Scholar 

  7. Schotte F, Soman J, Olson JS, Wulff M, Anfinrud PA (2004) J Struct Biol 147:235

    Article  CAS  Google Scholar 

  8. Hummer G, Schotte F, Anfinrud PA (2004) Proc Natl Acad Sci USA 101:15330

    Article  CAS  Google Scholar 

  9. Sato A, Gao Y, Kitagawa T, Mizutani Y (2007) Proc Natl Acad Sci USA 104:9627

    Article  CAS  Google Scholar 

  10. Guallar V, Jarzecki AA, Friesner RA, Spiro TG (2006) J Am Chem Soc 128:5427

    Article  CAS  Google Scholar 

  11. Henry ER, Eaton WA, Hochstrasser RM (1986) Proc Natl Acad Sci USA 83:8982

    Article  CAS  Google Scholar 

  12. Mizutani Y, Kitagawa T (1997) Science 278:443

    Article  CAS  Google Scholar 

  13. Mizutani Y, Kitagawa T (2002) Bull Chem Soc Jpn 75:623

    Article  CAS  Google Scholar 

  14. Sagnella DE, Straub JE (2001) J Phys Chem B 105:7057

    Article  CAS  Google Scholar 

  15. Okazaki I, Hara Y, Nagaoka M (2001) Chem Phys Lett 337:151

    Article  CAS  Google Scholar 

  16. Bu L, Straub JE (2003) J Phys Chem B 107:10634

    Article  CAS  Google Scholar 

  17. Zhang Y, Fujisaki H, Straub JE (2007) J Phys Chem B 111:3243

    Article  CAS  Google Scholar 

  18. Ye X, Demidov A, Rosca F, Wang W, Kumar A, Ionascu D, Zhu L, Barrick D, Wharton D, Champion PM (2003) J Phys Chem A 107:8156

    Article  CAS  Google Scholar 

  19. Koyama M, Neya S, Mizutani Y (2006) Chem Phys Lett 430:404

    Article  CAS  Google Scholar 

  20. Leitner DM (2009) J Chem Phys 130:195101

    Article  Google Scholar 

  21. Lian T, Locke B, Kholodenko Y, Hochstrasser RM (1994) J Phys Chem 98:11648

    Article  CAS  Google Scholar 

  22. Ota N, Agard DA (2005) J Mol Biol 351:345

    Article  CAS  Google Scholar 

  23. Sharp K, Skinner JJ (2006) Proteins Struct Funct Bioinform 65:347

    Article  CAS  Google Scholar 

  24. Botan V, Backus EHG, Pfister R, Moretto A, Crisma M, Toniolo C, Nguyen PH, Stock G, Hamm P (2007) Proc Natl Acad Sci USA 104:12749

    Article  CAS  Google Scholar 

  25. Nguyen PH, Park S-M, Stock G (2010) J Chem Phys 132:025102

    Article  Google Scholar 

  26. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

  27. Henry ER, Levitt M, Eaton WA (1985) Proc Natl Acad Sci USA 82:2034

    Article  CAS  Google Scholar 

  28. Giammona DA (1984) Ph.D. thesis, University of California, Davis

  29. The Chemical Society of Japan (ed) (1993) Kagaku-binran (Handbook of Chemistry) Basic volume, 4th ed. II. Maruzen, Tokyo (in Japanese)

  30. Cheng BX, Schoenborn BP (1990) Acta Cryst B46:195

    CAS  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  32. Tironi IG, Brunne RM, van Gunsteren WF (1996) Chem Phys Lett 250:19

    Article  CAS  Google Scholar 

  33. Evans DJ, Morriss G (2008) Statistical mechanics of nonequilibrium liquids, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant-in-aid for the 21st Century COE program “Frontiers of Computational Science” at Nagoya University and also by a grant-in-aid for Science Research from the Ministry of Education, Culture, Sport, Science and Technology in Japan and the Core Research for Evolutional Science and Technology (CREST) “High Performance Computing for Multi-scale and Multi-physics Phenomena” from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Nagaoka.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takayanagi, M., Nagaoka, M. Incipient structural and vibrational relaxation process of photolyzed carbonmonoxy myoglobin: statistical analysis by perturbation ensemble molecular dynamics method. Theor Chem Acc 130, 1115–1129 (2011). https://doi.org/10.1007/s00214-011-0992-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0992-y

Keywords

Navigation