Advertisement

Theoretical Chemistry Accounts

, Volume 130, Issue 2–3, pp 305–315 | Cite as

A significant role of the totally symmetric valley-ridge inflection point in the bifurcating reaction pathway

  • Yu Harabuchi
  • Tetsuya TaketsuguEmail author
Regular Article

Abstract

Appearance of the valley-ridge inflection (VRI) point on the intrinsic reaction path (IRP) introduces geometrical instability of the reaction coordinate and sometimes leads to two different product minima on the potential energy surface (PES). A significant role of the totally symmetric VRI point on the IRP is discussed from the viewpoint of branching of the reaction pathway. As illustrative examples, ab initio calculations were performed to determine the IRP for XCHO + CH3Cl (X = H, CH3) at the Møller–Plesset second-order perturbation theory (MP2) level with 6-31+G(d) basis sets and geometric features of the PES around the IRP have been analyzed.

Keywords

Bifurcation Totally symmetric valley-ridge inflection Intrinsic reaction path 

Notes

Acknowledgments

This paper is dedicated to Prof Shigeru Nagase on the occasion of his 65th birthday. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology. The computations were performed using the Research Center for Computational Science, Okazaki, Japan. Y.H. thanks a support from GCOE program in Hokkaido University.

References

  1. 1.
    Born M, Oppenheimer JR (1927) Annalen der Physik 84:457–484CrossRefGoogle Scholar
  2. 2.
    Fukui K (1970) J Phys Chem 74:4161CrossRefGoogle Scholar
  3. 3.
    Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440–448CrossRefGoogle Scholar
  4. 4.
    Truhlar DG, Steckler R, Gordon MS (1987) Chem Rev 87:217–236CrossRefGoogle Scholar
  5. 5.
    Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99–112CrossRefGoogle Scholar
  6. 6.
    Kato S, Morokuma K (1980) J Chem Phys 73:3900–3914CrossRefGoogle Scholar
  7. 7.
    Taketsugu T, Gordon MS (1995) J Chem Phys 103:10042–10049CrossRefGoogle Scholar
  8. 8.
    Taketsugu T, Gordon MS (1996) J Chem Phys 104:2834–2840CrossRefGoogle Scholar
  9. 9.
    Taketsugu T, Hirao K (1997) J Chem Phys 107:10506–10514CrossRefGoogle Scholar
  10. 10.
    Valtazanos P, Ruedenberg K (1986) Theor Chim Acta 69:281–307CrossRefGoogle Scholar
  11. 11.
    Valtazanos P, Elbert ST, Xantheas S, Ruedenberg K (1991) Theor Chim Acta 78:287–326CrossRefGoogle Scholar
  12. 12.
    Metiu H, Ross J, Silbey R, George TF (1974) J Chem Phys 61:3200CrossRefGoogle Scholar
  13. 13.
    Tachibana A, Okazaki I, Koizumi M, Hori K, Yamabe T (1985) J Am Chem Soc 107:1190–1196CrossRefGoogle Scholar
  14. 14.
    Quapp W (1989) Theor Chim Acta 75:447–460CrossRefGoogle Scholar
  15. 15.
    Schlegel HB (1994) J Chem Soc-Faraday Trans 90:1569–1574CrossRefGoogle Scholar
  16. 16.
    Taketsugu T, Tajima N, Hirao K (1996) J Chem Phys 105:1933–1939CrossRefGoogle Scholar
  17. 17.
    Yanai T, Taketsugu T, Hirao K (1997) J Chem Phys 107:1137–1146CrossRefGoogle Scholar
  18. 18.
    Taketsugu T, Hirano T (1993) J Chem Phys 99:9806–9814CrossRefGoogle Scholar
  19. 19.
    Taketsugu T, Hirano T (1994) J Mol Struct (THEOCHEM) 116:169–176Google Scholar
  20. 20.
    Taketsugu T, Hirao K (1999) In: Fueno T (ed) The transition state: a theoretical approach. Kodansha-Gordon and Breach Science, pp 45–63Google Scholar
  21. 21.
    Taketsugu T, Yanai T, Hirao K, Gordon MS (1998) J Mol Struct (THEOCHEM) 451:163–177Google Scholar
  22. 22.
    Taketsugu T, Kumeda Y (2001) J Chem Phys 114:6973–6982CrossRefGoogle Scholar
  23. 23.
    Kumeda Y, Taketsugu T (2000) J Chem Phys 113:477–484CrossRefGoogle Scholar
  24. 24.
    Windus TL, Gordon MS, Burggraf LW, Davis LP (1991) J Am Chem Soc 113:4356–4357CrossRefGoogle Scholar
  25. 25.
    Colwell SM, Handy NC (1985) J Chem Phys 82:1281–1290CrossRefGoogle Scholar
  26. 26.
    Taketsugu T, Wales DJ (2002) Mol Phys 100:2793–2806CrossRefGoogle Scholar
  27. 27.
    Shaik S, Danovich D, Sastry GN, Ayala PY, Schlegel HB (1997) J Am Chem Soc 119:9237–9245CrossRefGoogle Scholar
  28. 28.
    Zipse H (1997) Angewandte Chemie-International Edition in English 36:1697–1700CrossRefGoogle Scholar
  29. 29.
    Sastry GN, Shaik S (1996) J Phys Chem 100:12241–12252CrossRefGoogle Scholar
  30. 30.
    Yamataka H, Aida M, Dupuis M (1999) Chem Phys Let 300:583–587CrossRefGoogle Scholar
  31. 31.
    Li J, Li XS, Shaik S, Schlegel HB (2004) J Phys Chem A 108:8526–8532CrossRefGoogle Scholar
  32. 32.
    Lie J, Shaik S, Schlegel HB (2006) J Phys Chem A 110:2801–2806CrossRefGoogle Scholar
  33. 33.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Division of Chemistry, Graduate School of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations