Theoretical Chemistry Accounts

, Volume 130, Issue 2–3, pp 279–297 | Cite as

Quantum chemical studies on the role of water microsolvation in interactions between group 12 metal species (Hg2+, Cd2+, and Zn2+) and neutral and deprotonated cysteines

  • Seiji MoriEmail author
  • Takahiro Endoh
  • Yuki Yaguchi
  • Yuuhei Shimizu
  • Takayoshi Kishi
  • Tetsuya K. Yanai
Regular Article


Interactions of group 12 metal(II) species (Hg2+, Cd2+, Zn2+, Hg(H2O) n 2+ , Cd(H2O) n 2+ , and Zn(H2O) n 2+ (n = 1, 2) with neutral (RSH), deprotonated (RS), and doubly deprotonated cysteine species (abbreviated as “H2cys”, “Hcys”, and “cys2−”, respectively) are examined with the Becke three-parameter Lee–Yang–Parr (B3LYP) hybrid functional after preliminary screening in a conformation analysis with the Parameterized Model number 3 (PM3) semiempirical method. Effects of water on aqueous solution are evaluated by microsolvation and polarized continuum model (PCM) approaches. In the most stable conformations of M(H2cys)2+ and M(Hcys)+ complexes (M = Hg2+, Cd2+, and Zn2+), the SH group of the cysteine moiety is already deprotonated and undergoes strong binding with the metal ion. Among Hg(H2cys)2+ complexes, cysteine complexes of Hg2+ without deprotonation of the SH group and mercury(II) carboxylato-type structures are at least 83 and 117 kJ/mol less stable in energy than the most stable complex (B3LYP/6-311++G(d,p)-SDD+d+f//B3LYP/6-31G(d)-SDD+d). Although Zn2+ binds more strongly than Hg2+ to a H2cys molecule at the high-level CCSD(T)/6-311++G(d,p)-SDD+d+f//B3LYP/6-311++G(d,p)-SDD+d+f level, [Hg(H2O)2]2+ is stronger than [Zn(H2O)2]2+ because the deformation of [Zn(H2O)2]2+ required to bind to cys is much more than in [Hg(H2O)2]2+. Complexes with a deprotonated cysteine, M(Hcys)+ and M(cys), prefer a multidentate structure.


Mercury Cadmium Zinc Cysteine Molecular interaction Density functional calculations 



This work was supported by Grants-in-Aid No. 19550004 for Scientific Research from JSPS and by Scientific Research on Priority Areas “Molecular Theory for Real Systems”, No. 20038005 from MEXT. The generous allotment of computation time from the Research Center for Computational Science (RCCS), the National Institutes of Natural Sciences, Japan, is also gratefully acknowledged.

Supplementary material

214_2011_975_MOESM1_ESM.pdf (161 kb)
Supplementary material 1 (PDF 161 kb)


  1. 1.
    Zalups RK, Koropatnick J (eds) (2000) Molecular biology and toxicology of metals. Taylor & Francis, LondonGoogle Scholar
  2. 2.
    Walsh CT, Distefano MD, Moore MJ, Shewchuk LM, Verdine G (1988) FASEB J 2:124–130Google Scholar
  3. 3.
    Klaassen CD (ed) (2001) Casarett and Doull’s toxicology, 6th ednGoogle Scholar
  4. 4.
    Steele RA, Opella SJ (1997) Biochemistry 36:6885–6895CrossRefGoogle Scholar
  5. 5.
    Lafrance-Vanasse J, Lefebvre M, Di Lello P, Sygusch J, Omichinski JG (2009) J Biol Chem 284:938–944CrossRefGoogle Scholar
  6. 6.
    de Montellano PRO (ed) (2005) Cytochrome P450. Kluwer/Academic/Plenum, New YorkGoogle Scholar
  7. 7.
    Choe Y-K, Nagase S (2005) J Comput Chem 26:1600–1611CrossRefGoogle Scholar
  8. 8.
    Yanai TK, Mori S (2008) Chem Asian J 3:1900–1911CrossRefGoogle Scholar
  9. 9.
    Yanai TK, Mori S (2009) Chem Eur J 15:4464–4473CrossRefGoogle Scholar
  10. 10.
    Chan J, Huang Z, Merrifield ME, Salgado MT, Stillman MJ (2002) Coord Chem Rev 233–234:319–339CrossRefGoogle Scholar
  11. 11.
    Henkel G, Krebs B (2004) Chem Rev 104:801–824CrossRefGoogle Scholar
  12. 12.
    Stillman MJ, Shaw CF III, Suzuki KT (eds) (1991) Metallothioneins. VCH, New YorkGoogle Scholar
  13. 13.
    Zalups RK, Barfuss DW (1996) Toxicology 109:15–29CrossRefGoogle Scholar
  14. 14.
    Oyama Y, Nakata M, Sakamoto M, Chikahisa L, Miyoshi N, Satoh M (1998) Environ Toxicol Pharmacol 6:221–227CrossRefGoogle Scholar
  15. 15.
    Zalups RK, Barfuss DW (1995) J Toxicol Environ Health 44:401–413CrossRefGoogle Scholar
  16. 16.
    Bridges CC, Zalups RK (2010) J. Toxicol Environ Health Part B 13:385–410CrossRefGoogle Scholar
  17. 17.
    Clarkson TW, Magos L (2006) Crit Rev Toxicol 36:609–662CrossRefGoogle Scholar
  18. 18.
    Aschner M, Clarkson TW (1988) Brain Res 462:31–39CrossRefGoogle Scholar
  19. 19.
    Hirayama K (1980) Toxicol Appl Pharmocol 55:318–323CrossRefGoogle Scholar
  20. 20.
    Kerr KA, Ashmore JP, Koetzle TF (1975) Acta Cryst B31:2022–2026Google Scholar
  21. 21.
    Noguera M, Rodríguez-Santiago L, Sodupe M, Bertran J (2001) J Mol Struct (THEOCHEM) 537:307–318CrossRefGoogle Scholar
  22. 22.
    Fernández-Ramos A, Cabaleiro-Lagoa E, Hermida-Ramóna JM, Martínez-Núñeza E, Peña-Gallegoa A (2000) J Mol Struct (THEOCHEM) 498:191–200CrossRefGoogle Scholar
  23. 23.
    Pecul M (2006) Chem Phys Lett 418:1–10CrossRefGoogle Scholar
  24. 24.
    Sanz ME, Blanco S, López JC, Alonso JL (2008) Angew Chem Int Ed 47:6216–6220CrossRefGoogle Scholar
  25. 25.
    Taylor NJ, Wong YS, Chieh PC, Carty AJ (1975) J Chem Soc Dalton Trans 438–442Google Scholar
  26. 26.
    Taylor NJ, Carty AJ (1977) J Am Chem Soc 99:6143–6145CrossRefGoogle Scholar
  27. 27.
    Katono Y, Inoue Y, Chujo R (1977) Polym J 9:471–478CrossRefGoogle Scholar
  28. 28.
    Natusch DFS, Porter LJ (1971) J Chem Soc A 2527–2535Google Scholar
  29. 29.
    Rubius FM, Verduci C, Giampiccolo R, Pulvirenti S, Brambilla G, Colombi A (2004) J Am Soc Mass Spectrom 15:288–300CrossRefGoogle Scholar
  30. 30.
    Cheesman BV, Arnold AP, Rabenstein DL (1988) J Am Chem Soc 110:6359–6364CrossRefGoogle Scholar
  31. 31.
    Jalilehvand F, Leung BO, Izadifard M, Damian E (2006) Inorg Chem 45:66–73CrossRefGoogle Scholar
  32. 32.
    Leung BO, Jalilehvand F, Szilagyi RK (2008) J Phys Chem B 112:4770–4778CrossRefGoogle Scholar
  33. 33.
    Hughes W Jr (1947) J Am Chem Soc 69:1836–1837CrossRefGoogle Scholar
  34. 34.
    Nriagu JO (ed) (1979) The biogeochemistry of mercury in the environment. Elsevier/North-Holland Biomedical Press, AmsterdamGoogle Scholar
  35. 35.
    Oram PD, Fang X, Fernando Q, Letkeman P, Letkeman D (1996) Chem Res Toxicol 9:709–712CrossRefGoogle Scholar
  36. 36.
    Fuhr BJ, Rabenstein DL (1973) J Am Chem Soc 95:6944–6950CrossRefGoogle Scholar
  37. 37.
    Mah V, Jalilehvand F (2010) Chem Res Toxicol 23:1815–1823CrossRefGoogle Scholar
  38. 38.
    Tarbouriech N, Curran J, Ruigrok RWH, Burmeister WP (2000) Nat Struct Biol 7: 777–781. 1EZJ in Protein Data BankGoogle Scholar
  39. 39.
    Zalups RK, Barfuss DW (2002) J Toxicol Environ Health Part A 65:1471–1490CrossRefGoogle Scholar
  40. 40.
    Martelli A, Rousselet E, Dyeke C, Bouron A, Moulis J-M (2006) Biochimie 88:1807–1814CrossRefGoogle Scholar
  41. 41.
    Bottari E, Festa MR (1997) Talanta 44:1705–1718CrossRefGoogle Scholar
  42. 42.
    Jalilehvand F, Mah V, Leung BO, Mink J, Bernard GM, Hajba L (2009) Inorg Chem 48:4219–4230CrossRefGoogle Scholar
  43. 43.
    Barglik-Chory C, Remenyi C, Strohm H, Müller G (2004) J Phys Chem B 108:7637–7640CrossRefGoogle Scholar
  44. 44.
    Cai Z-X, Yang H, Zhang Y, Yan X-P (2006) Anal Chim Acta 559:234–239CrossRefGoogle Scholar
  45. 45.
    Plapp BV, Eklund H, Jones TA, Branden CI (1983) J Biol Chem 258:5537–5547Google Scholar
  46. 46.
    Ramaswamy S, Eklund H, Plapp BV (1994) Biochemistry 33:5230–5237CrossRefGoogle Scholar
  47. 47.
    Agarwal PK, Webb SP, Hammes-Schiffer S (2000) J Am Chem Soc 122:4803–4812CrossRefGoogle Scholar
  48. 48.
    Christianson DW, Lipscomb WN (1986) Proc Natl Acad Sci USA 83:7568–7572CrossRefGoogle Scholar
  49. 49.
    Cameron AD, Ridderstrom M, Olin B, Kavarana MJ, Creighton DJ, Mannervik B (1999) Biochemistry 38:13480–13490CrossRefGoogle Scholar
  50. 50.
    Venugopal B, Luckey TD (1978) Metal toxicity in mammals 2, chemical toxicity of metals and metalloids. Plenum Press, New York, USAGoogle Scholar
  51. 51.
    Cerda BA, Wesdemiotis C (1995) J Am Chem Soc 117:9734–9739CrossRefGoogle Scholar
  52. 52.
    Hoyau S, Ohanessian G (1997) J Am Chem Soc 119:2016–2024CrossRefGoogle Scholar
  53. 53.
    Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184–2196CrossRefGoogle Scholar
  54. 54.
    Spezia R, Tournois G, Cartailler T, Tortajada J, Jeanvoine Y (2006) J Phys Chem A 110:9727–9735CrossRefGoogle Scholar
  55. 55.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  56. 56.
    Belcastro M, Marino T, Russo N, Toscano M (2005) J Mass Spectr 40:300–306CrossRefGoogle Scholar
  57. 57.
    Mori S, Kishi T, Endoh T (2004) 30th annual meeting of the society of toxicology of Japan, Sagamihara, JapanGoogle Scholar
  58. 58.
    Mori S, Kishi T, Endoh T, Sudou K (2004) 84th annual meeting of Chemical Society of Japan, Nishinomiya, JapanGoogle Scholar
  59. 59.
    Mori S, Endoh T, Kishi T (2004) 7th international conference on mercury as a global pollutant, Ljubljana, SloveniaGoogle Scholar
  60. 60.
    Hoffmeyer RE, Singh SP, Doonan CJ, Ross ARS, Hughes RJ, Pickering IJ, George GN (2006) Chem Res Toxicol 19:753–759CrossRefGoogle Scholar
  61. 61.
    Bridges CC, Zalups RK (2006) Chem Res Toxicol 19:1117–1118CrossRefGoogle Scholar
  62. 62.
    Hoffmeyer RE, Singh SP, Doonan CJ, Pickering IJ, George GN, Ross ARS, Hughes RJ (2006) Chem Res Toxicol 19:1118–1120CrossRefGoogle Scholar
  63. 63.
    Krupp EM, Miline BF, Mestrot A, Meharg AA, Feldmann J (2008) Anal Bioanal Chem 390:1753–1766CrossRefGoogle Scholar
  64. 64.
    Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Mol Phys 80:1431–1441CrossRefGoogle Scholar
  65. 65.
    Ramírez J-Z, Vargas R, Garza J, Hay BP (2006) J Chem Theory Comput 2:1510–1519CrossRefGoogle Scholar
  66. 66.
    Gourlaouen C, Piquemak J-P, Saue T, Parisel O (2005) J Comput Chem 27:142–156CrossRefGoogle Scholar
  67. 67.
    Stricks W, Kolthoff IM (1953) J Am Chem Soc 75:5673–5681CrossRefGoogle Scholar
  68. 68.
    Walker MD, Williams DR (1974) J Chem Soc Dalton Trans 1186–1189Google Scholar
  69. 69.
    Lenz GR, Martell AE (1964) Biochemistry 3:745–750CrossRefGoogle Scholar
  70. 70.
    Smith RM, Martell AE (2003) NIST critically selected stability constants of metal complexes database, Version 7.0Google Scholar
  71. 71.
    Bottari E, Festa MR (1997) Talanta 44:1705–1718CrossRefGoogle Scholar
  72. 72.
    Starý J, Kratzer K (1988) J Radioanal Nucl Chem Lett 126:69–75CrossRefGoogle Scholar
  73. 73.
    Berthon G (1995) Pure Appl Chem 67:1117–1240CrossRefGoogle Scholar
  74. 74.
    Rulíšek L, Havlas Z (2002) J Phys Chem A 106:3855–3866CrossRefGoogle Scholar
  75. 75.
    Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem B 111:9146–9152CrossRefGoogle Scholar
  76. 76.
    Tai H-C, Lim C (2006) J Phys Chem A 110:452–462CrossRefGoogle Scholar
  77. 77.
    Dimakis N, Farooqi MJ, Garza ES, Bunker G (2008) J Chem Phys 128:115104CrossRefGoogle Scholar
  78. 78.
    Ishimori K-i, Mori S, Ito Y, Ohashi K, Imura H (2009) Talanta 78:1272–1279CrossRefGoogle Scholar
  79. 79.
    Marino T, Toscano M, Russo N, Grand A (2006) J Phys Chem B 110:24666–24673CrossRefGoogle Scholar
  80. 80.
    Dudev T, Lim C (2007) J Am Chem Soc 129:12497–12504CrossRefGoogle Scholar
  81. 81.
    Schmitt M, Böhm M, Ratzer C, Vu C, Kalkman I, Meerts WL (2005) J Am Chem Soc 127:10356–10364CrossRefGoogle Scholar
  82. 82.
    Ahn D-S, Park S-W, Jeon I-S, Lee M-K, Kim N-H, Han Y-H, Lee S (2003) J Phys Chem B 107:14109–14118CrossRefGoogle Scholar
  83. 83.
    Michaux C, Wouters J, Perpete EA, Jacquemin D (2008) J Phys Chem B 112:9896–9902CrossRefGoogle Scholar
  84. 84.
    Bachrach SM, Nguyen TT, Demoin DW (2009) J Phys Chem A 113:6172–6181CrossRefGoogle Scholar
  85. 85.
    Moisés CL, Ramos DR, Santaballa JA (2006) Chem Phys Lett 417:28–33CrossRefGoogle Scholar
  86. 86.
    Rai AK, Fei W, Lu Z, Lin Z (2009) Theor Chem Acc 124:37–47CrossRefGoogle Scholar
  87. 87.
    Gao B, Wyttenbach T, Bowers MT (2009) J Am Chem Soc 131:4695–4701CrossRefGoogle Scholar
  88. 88.
    Shepler BC, Wright AD, Balabanov NB, Peterson KA (2007) J Phys Chem A 111:11342–11349CrossRefGoogle Scholar
  89. 89.
    Spartan’04, Wavefuntion Inc, IrvineGoogle Scholar
  90. 90.
    See Cramer CJ (2002) Essentials of computational chemistry. Wiley, ChichesterGoogle Scholar
  91. 91.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. John Wiley, New YorkGoogle Scholar
  92. 92.
    Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114CrossRefGoogle Scholar
  93. 93.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  94. 94.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  95. 95.
    Takano Y, Houk KN (2005) J Chem Theory Comput 1:70–77CrossRefGoogle Scholar
  96. 96.
    Gaussian 03, Revision B.03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liashenko G Liu, Piskorz AP, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., WallingfordGoogle Scholar
  97. 97.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926. And references cited thereinGoogle Scholar
  98. 98.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  99. 99.
    Pearson PG (1963) J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  100. 100.
    Richens DT (1997) The chemistry of aqua ions. Wiley, ChichesterGoogle Scholar
  101. 101.
    Eisler R, Hennekey RJ (1977) Arch Environ Contam Toxicol 6:315–323CrossRefGoogle Scholar
  102. 102.
    Lewis DFV, Dobrota M, Taylor MG, Parke DV (1999) Environ Toxicol Chem 18:2199–2204Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Seiji Mori
    • 1
    • 2
    Email author
  • Takahiro Endoh
    • 1
  • Yuki Yaguchi
    • 1
  • Yuuhei Shimizu
    • 1
  • Takayoshi Kishi
    • 1
  • Tetsuya K. Yanai
    • 1
  1. 1.Faculty of ScienceIbaraki UniversityBunkyo, MitoJapan
  2. 2.Frontier Research Center for Applied Atomic SciencesIbaraki UniversityTokai, IbarakiJapan

Personalised recommendations