Theoretical Chemistry Accounts

, Volume 130, Issue 2–3, pp 251–260

Assessment of theoretical procedures for hydrogen-atom abstraction by chlorine, and related reactions

Regular Article

Abstract

We have examined a number of hydrogen-abstraction reactions and assessed various theoretical procedures with regard to their performance for geometry optimization and for calculating barriers and reaction energies. We find that the BH&H-LYP and M05-2X procedures with the 6-31+G(d,p) basis set provide reasonable predictions for the geometries of the transition structures and also yield reasonable imaginary frequencies when compared with our benchmark QCISD/6-31+G(d,p) and CCSD(T)/6-311+G(3df,2p) values. For the calculation of barriers and reaction energies, M05-2X appears to be the most accurate of the hybrid functionals. The double-hybrid functionals, B2K-PLYP, UB2-PLYP-09, ROB2-PLYP, and DSD-B-LYP-D3, when used in combination with an augmented triple-zeta basis set, give very good agreement with the benchmark URCCSD(T)/aug-cc-pVQZ energies. We find that for wavefunction procedures, use of CCSD(T) in combination with an augmented triple-zeta quality basis set is required for the accurate prediction of barriers and reaction energies for these reactions.

Keywords

Hydrogen abstraction Ab initio Density functional theory 

Supplementary material

214_2011_967_MOESM1_ESM.pdf (247 kb)
Supplementary material 1 (PDF 247 kb)

References

  1. 1.
    Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure, 6th edn. Wiley, HobokenGoogle Scholar
  2. 2.
    Rossberg M, Lendle W, Pfleiderer G, Tögel A, Dreher EL, Langer E, Rassaerts H, Kleinschmidt P, Strack H, Cook R, Beck U, Lipper KA, Torkelson TR, Löser E, Beutel KK, Mann T (2006) In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Solomon S (1999) Rev Geophys 37:275CrossRefGoogle Scholar
  4. 4.
    Wayne RP (2000) Chemistry of atmospheres, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Bianco R, Hynes JT (2006) Acc Chem Res 39:159CrossRefGoogle Scholar
  6. 6.
    Ravishankara AR (2009) Proc Natl Acad Sci USA 106:13639Google Scholar
  7. 7.
    Wallington TJ, Andino JM, Lorkovic IM, Kaiser EW, Marston G (1990) J Phys Chem 94:3644CrossRefGoogle Scholar
  8. 8.
    Atkinson R, Baulch DL, Cox RA, Hampson RF Jr, Kerr JA, Troe J (1992) J Phys Chem Ref Data 21:1125CrossRefGoogle Scholar
  9. 9.
    Kaiser EW, Wallington TJ (1996) J Phys Chem 100:4111CrossRefGoogle Scholar
  10. 10.
    Sarzynski D, Sztuba B (2002) Int J Chem Kinet 34:651CrossRefGoogle Scholar
  11. 11.
    Kaiser EW, Wallington TJ (2010) Int J Chem Kinet 42:113CrossRefGoogle Scholar
  12. 12.
    Gola AA, Sarzynski D, Drys A, Jodkowski JT (2010) Chem Phys Lett 486:7CrossRefGoogle Scholar
  13. 13.
    Hehre WJ, Radom L, Schleyer PvP, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  14. 14.
    Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  15. 15.
    Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, ChichesterGoogle Scholar
  16. 16.
    Yamataka H, Nagase S (1988) J Org Chem 53:3232CrossRefGoogle Scholar
  17. 17.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  18. 18.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796CrossRefGoogle Scholar
  19. 19.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358CrossRefGoogle Scholar
  20. 20.
    Troya D, Weiss PJE (2006) J Chem Phys 124:074313CrossRefGoogle Scholar
  21. 21.
    Czakó G, Shepler BC, Braams BJ, Bowman JM (2009) J Chem Phys 130:084301CrossRefGoogle Scholar
  22. 22.
    Taylor MS, Ivanic SA, Wood GPF, Easton CJ, Bacskay GB, Radom L (2009) J Phys Chem A 113:11817CrossRefGoogle Scholar
  23. 23.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  24. 24.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  25. 25.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  26. 26.
    Boese AD, Martin JML (2004) J Chem Phys 121:3405CrossRefGoogle Scholar
  27. 27.
    Martin JML, de Oliveira G (1999) J Chem Phys 111:1843CrossRefGoogle Scholar
  28. 28.
    Martin JML (1999) Chem Phys Lett 310:271CrossRefGoogle Scholar
  29. 29.
    Parthiban S, Martin JML (2001) J Chem Phys 114:6014CrossRefGoogle Scholar
  30. 30.
    Henry DJ, Sullivan MB, Radom L (2003) J Chem Phys 118:4849CrossRefGoogle Scholar
  31. 31.
    Curtiss LA, Redfern PC, Raghavachari K, Pople JA (2001) J Chem Phys 114:108CrossRefGoogle Scholar
  32. 32.
    Grimme S (2006) J Chem Phys 124:034108CrossRefGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A02. Gaussian, Inc., WallingfordGoogle Scholar
  34. 34.
    Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaβ A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2006) MOLPRO 2006.1. University of Birmingham, BirminghamGoogle Scholar
  35. 35.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  36. 36.
    Perdew JP (1991) In: Ziesche P, Eschrig P (eds) Electronic structure of solids’91. Akademie Verlag, BerlinGoogle Scholar
  37. 37.
    Wilson PJ, Bradley TJ, Tozer DJ (2001) J Chem Phys 115:9233CrossRefGoogle Scholar
  38. 38.
    Schmider HL, Becke AD (1998) J Chem Phys 108:9624CrossRefGoogle Scholar
  39. 39.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  40. 40.
    Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:194101CrossRefGoogle Scholar
  41. 41.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364CrossRefGoogle Scholar
  42. 42.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  43. 43.
    Adamo C, Barone V (1998) J Chem Phys 108:664CrossRefGoogle Scholar
  44. 44.
    Adamo C, Barone V (1999) J Chem Phys 110:6158CrossRefGoogle Scholar
  45. 45.
    Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667CrossRefGoogle Scholar
  46. 46.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540CrossRefGoogle Scholar
  47. 47.
    Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51CrossRefGoogle Scholar
  48. 48.
    Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615CrossRefGoogle Scholar
  49. 49.
    Tarnopolsky A, Karton A, Sertchook R, Vuzman D, Martin JML (2008) J Phys Chem A 112:3CrossRefGoogle Scholar
  50. 50.
    Graham DC, Menon AS, Goerigk L, Grimme S, Radom L (2009) J Phys Chem A 113:9861CrossRefGoogle Scholar
  51. 51.
    Curtiss LA, Redfern PC, Raghavachari K, Pople JA (1997) J Chem Phys 106:1063CrossRefGoogle Scholar
  52. 52.
    Curtiss LA, Redfern PC, Raghavachari K, Pople JA (1998) J Chem Phys 109:42CrossRefGoogle Scholar
  53. 53.
    Goerigk L, Grimme S (2011) J Chem Theory Comput 7:291CrossRefGoogle Scholar
  54. 54.
    Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108CrossRefGoogle Scholar
  55. 55.
    Grimme S (2003) J Chem Phys 118:9095CrossRefGoogle Scholar
  56. 56.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104. See also: http://toc.uni-muenster.de/DFTD3/index.html
  57. 57.
    Menon AS, Radom L (2008) J Phys Chem A 112:13225CrossRefGoogle Scholar
  58. 58.
    Linstrom PJ, Mallard WG (eds) (2010) NIST chemistry webbook, NIST standard reference database number 69. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  59. 59.
    Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and BiotechnologyUniversity of SydneySydneyAustralia

Personalised recommendations