Advertisement

Theoretical Chemistry Accounts

, Volume 130, Issue 4–6, pp 701–709 | Cite as

Finite-field evaluation of static (hyper)polarizabilities based on the linear-scaling divide-and-conquer method

  • Tsuguki Touma
  • Masato Kobayashi
  • Hiromi NakaiEmail author
Regular Article

Abstract

This article describes the finite-field (FF) approach for calculating static (hyper)polarizabilities based on the divide-and-conquer (DC) method. The method is assessed by the Hartree–Fock (HF) and post-HF calculations of π-conjugated model systems: a terminal donor or acceptor substituent on polyene chains. The DC–FF approach enables the evaluation of molecular polarizabilities with highly accurate coupled-cluster theory. Numerical assessments demonstrate that the (hyper)polarizabilities calculated by the present DC–FF method agree with the conventional FF results to within a few percent by employing an appropriate buffer size.

Keywords

Divide-and-conquer Finite-field method Hyperpolarizability Linear-scaling Nonlinear optics Correlation theory 

Notes

Acknowledgments

Some of the present calculations were performed at the Research Center for Computational Science (RCCS), Okazaki Research Facilities, National Institutes of Natural Sciences (NINS). This study was supported in part by Grants-in-Aid for Challenging Exploratory Research “KAKENHI 22655008” and for Young Scientists (B) “KAKENHI 22750016” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; by the Nanoscience Program in the Next Generation Super Computing Project of the MEXT; by the Global Center Of Excellence (COE) “Practical Chemical Wisdom” from the MEXT; and by a project research grant for “Practical in-silico chemistry for material design” from the Research Institute for Science and Engineering (RISE), Waseda University.

References

  1. 1.
    Yesodhaa SK, Sadashiva Pillaia CK, Tsutsumi N (2004) Prog Polym Sci 29:45CrossRefGoogle Scholar
  2. 2.
    Huanga JP, Yu KW (2006) Phys Rep 431:87CrossRefGoogle Scholar
  3. 3.
    Choa MJ, Choia DH, Sullivanb PA, Akelaitis AJP, Daltonb LR (2008) Prog Polym Sci 33:1013CrossRefGoogle Scholar
  4. 4.
    Khoo IC (2009) Phys Rep 471:221CrossRefGoogle Scholar
  5. 5.
    Imamura A, Aoki Y, Maekawa K (1991) J Chem Phys 95:5419CrossRefGoogle Scholar
  6. 6.
    Aoki Y, Suhai S, Imamura A (1994) Int J Quantum Chem 52:267CrossRefGoogle Scholar
  7. 7.
    Makowski M, Korchowiec J, Gu FL, Aoki Y (2010) J Comput Chem 31:1733Google Scholar
  8. 8.
    Korchowiec J, Gu FL, Aoki Y (2005) Int J Quantum Chem 105:875CrossRefGoogle Scholar
  9. 9.
    Gu FL, Aoki Y, Korchowiec J, Imamura A, Kirtman B (2004) J Chem Phys 121:10385CrossRefGoogle Scholar
  10. 10.
    Korchowiec J, Gu FL, Imamura A, Kirtman B, Aoki Y (2005) Int J Quantum Chem 102:785CrossRefGoogle Scholar
  11. 11.
    Korchowiec J, Lewandowski J, Makowski M, Gu FL, Aoki Y (2009) J Comput Chem 30:2515CrossRefGoogle Scholar
  12. 12.
    Aoki Y, Gu FL (2009) In: Proceedings of the international conference of computational methods in sciences and engineering (ICCMSE 2009) AIP conference proceedingGoogle Scholar
  13. 13.
    Yang W (1991) Phys Rev Lett 66:1438CrossRefGoogle Scholar
  14. 14.
    Yang W, Lee TS (1995) J Chem Phys 103:5674CrossRefGoogle Scholar
  15. 15.
    Akama T, Kobayashi M, Nakai H (2007) J Comput Chem 28:2003CrossRefGoogle Scholar
  16. 16.
    Akama T, Fujii A, Kobayashi M, Nakai H (2007) Mol Phys 105:2799CrossRefGoogle Scholar
  17. 17.
    Kobayashi M, Akama T, Nakai H (2006) J Chem Phys 125:204106CrossRefGoogle Scholar
  18. 18.
    Kobayashi M, Imamura Y, Nakai H (2007) J Chem Phys 127:074103CrossRefGoogle Scholar
  19. 19.
    Kobayashi M, Nakai H (2008) J Chem Phys 129:044103CrossRefGoogle Scholar
  20. 20.
    Kobayashi M, Nakai H (2009) J Chem Phys 131:114108CrossRefGoogle Scholar
  21. 21.
    Kobayashi M, Nakai H (2009) Int J Quantum Chem 109:2227CrossRefGoogle Scholar
  22. 22.
    Kobayashi M, Yoshikawa T, Nakai H (2010) Chem Phys Lett 500:172CrossRefGoogle Scholar
  23. 23.
    Kobayashi M, Kunisada T, Akama T, Sakura D, Nakai H (2011) J Chem Phys 134:034105CrossRefGoogle Scholar
  24. 24.
    Touma T, Kobayashi M, Nakai H (2010) Chem Phys Lett 485:247CrossRefGoogle Scholar
  25. 25.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  26. 26.
    Kobayashi M, Nakai H (2011) Divide-and-conquer approaches to quantum chemistry: Theory and implementation. In: Papadopoulos MG, Zalesny R, Mezey PG, Leszczynski J (eds) Linear-scaling techniques in computational chemistry and physics. Springer, Berlin, pp 97–127CrossRefGoogle Scholar
  27. 27.
    Kobayashi M, Akama T, Nakai H (2009) J Comput Chem Jpn 8:1CrossRefGoogle Scholar
  28. 28.
    Gu FL, Aoki Y, Imamura A, Bishop DM, Kirtman B (2003) Mol Phys 101:1487CrossRefGoogle Scholar
  29. 29.
    Ohnishi S, Gu FL, Naka K, Imamura A, Kirtman B, Aoki Y (2004) J Phys Chem A 108:8478CrossRefGoogle Scholar
  30. 30.
    Ohnishi S, Orimoto Y, Gu FL, Aoki Y (2007) J Chem Phys 127:084702CrossRefGoogle Scholar
  31. 31.
    Chen W, Yu G, Gu FL, Aoki Y (2009) Chem Phys Lett 474:175CrossRefGoogle Scholar
  32. 32.
    Yu GT, Chen W, Gu FL, Aoki Y (2010) J Comput Chem 31:863CrossRefGoogle Scholar
  33. 33.
    Pomogaeva A, Gu FL, Imamura A, Aoki Y (2010) Theor Chem Acc 125:453CrossRefGoogle Scholar
  34. 34.
    Yan LK, Pomogaeva A, Gu FL, Aoki Y (2010) Theor Chem Acc 125:511CrossRefGoogle Scholar
  35. 35.
    Fedorov DG, Kitaura K (2007) J Phys Chem A 111:6904CrossRefGoogle Scholar
  36. 36.
    Fedorov DG, Kitaura K (eds) (2009) The fragment molecular orbital method: practical applications to large molecular systems. CRC Press, Boca RatonGoogle Scholar
  37. 37.
    Mochizuki Y, Ishikawa T, Tanaka K, Tokiwa H, Nakano T, Tanaka S (2006) Chem Phys Lett 418:418CrossRefGoogle Scholar
  38. 38.
    Ishikawa T, Mochizuki Y, Imamura K, Nakano T, Mori H, Tokiwa H, Tanaka K, Miyoshi E, Tanaka S (2006) Chem Phys Lett 430:361CrossRefGoogle Scholar
  39. 39.
    Nakai H (2002) Chem Phys Lett 363:73CrossRefGoogle Scholar
  40. 40.
    Mulliken RS (1955) J Chem Phys 23:1833CrossRefGoogle Scholar
  41. 41.
    Nesbet RK (1969) Adv Chem Phys 14:1CrossRefGoogle Scholar
  42. 42.
    Grimme S (2003) J Chem Phys 118:9095CrossRefGoogle Scholar
  43. 43.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257CrossRefGoogle Scholar
  44. 44.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213CrossRefGoogle Scholar
  45. 45.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  46. 46.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  47. 47.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  48. 48.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  49. 49.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540CrossRefGoogle Scholar
  50. 50.
    Mosley DH, Champagne B, André JM (1995) Int J Quantum Chem 29:117CrossRefGoogle Scholar
  51. 51.
    Champagne B, Perpète EA, van Gisbergen SJA, Baerends E-J, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489CrossRefGoogle Scholar
  52. 52.
    Kirtman B, Toto JL, Robins KA, Hasan M (1995) J Chem Phys 102:5350CrossRefGoogle Scholar
  53. 53.
    Rice JE, Handy NC (1991) J Chem Phys 94:4959CrossRefGoogle Scholar
  54. 54.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650CrossRefGoogle Scholar
  55. 55.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comput Chem 4:294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tsuguki Touma
    • 1
  • Masato Kobayashi
    • 1
    • 2
  • Hiromi Nakai
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Chemistry and Biochemistry, School of Advanced Science and EngineeringWaseda UniversityTokyoJapan
  2. 2.Department of Theoretical and Computational Molecular ScienceInstitute for Molecular ScienceOkazakiJapan
  3. 3.Research Institute for Science and EngineeringWaseda UniversityTokyoJapan
  4. 4.CRESTJapan Science and Technology AgencyTokyoJapan

Personalised recommendations