Theoretical Chemistry Accounts

, Volume 130, Issue 1, pp 51–60

Mechanism and kinetics of the hydroxyl and hydroperoxyl radical scavenging activity of N-acetylcysteine amide

Regular Article

Abstract

The ·OH and ·OOH radical scavenging activity of N-acetylcysteine amide (NACA) has been studied using density functional theory, specifically the M05-2X functional. All possible reaction sites have been considered, and the branching ratios have been estimated. The efficiency of different mechanisms of reaction has been evaluated, and it has been concluded that NACA reacts exclusively by hydrogen atom transfer (HAT). The overall reactivity of NACA toward OH radicals is proposed to be diffusion-controlled in both non-polar and polar media. The values of the overall rate coefficients are 3.80 × 109 and 1.36 × 109 L mol−1 s−1 for benzene and aqueous solutions, respectively. The reactivity of NACA toward ·OOH, on the other hand, is much lower but still higher than those of melatonin and caffeine. HAT from the –SH site is proposed to be the channel accounting for most of the radical scavenging activity of NACA in aqueous solution. In non-polar environments, two channels of reaction were found to similarly contribute to the overall reactivity of NACA toward OH radicals. They are those corresponding to hydrogen atom transfer from –CH2 and –SH sites.

Keywords

NACA Oxidative stress Free radicals Antioxidant Scavenger Rate constant Mechanisms 

Supplementary material

214_2011_958_MOESM1_ESM.pdf (59 kb)
Electronic supplementary material: The online version of this article contains supplementary material: the spin-squared values for all the open-shell species, before and after annihilation of the first spin contaminant; as well as their percent errors with respect to the expected value (PDF 59 kb)

References

  1. 1.
    Grinberg L, Fibach E, Amer J, Atlas D (2005) Free Radic Biol Med 38:136CrossRefGoogle Scholar
  2. 2.
    Penugonda S, Mare S, Goldstein G, Banks WA, Ercal N (2005) Brain Res 1056:132CrossRefGoogle Scholar
  3. 3.
    Price TO, Uras F, Banks WA, Ercal N (2006) Exp Neurol 201:193CrossRefGoogle Scholar
  4. 4.
    Wu W, Abraham L, Ogony J, Matthews R, Goldstein G, Ercal N (2008) Life Sci 82:1122CrossRefGoogle Scholar
  5. 5.
    Zhang X, Banerjee A, Banks WA, Ercal N (2009) Brain Res 1275:87CrossRefGoogle Scholar
  6. 6.
    Banerjee A, Zhang X, Manda KR, Banks WA, Ercal N (2010) Free Radic Biol Med 48:1388CrossRefGoogle Scholar
  7. 7.
    Sayre LM, Perry G, Smith MA (2008) Chem Res Toxicol 21:172CrossRefGoogle Scholar
  8. 8.
    Lin MT, Beal MF (2006) Nature 443:787CrossRefGoogle Scholar
  9. 9.
    Reddy PH (2006) J Neurochem 96:1CrossRefGoogle Scholar
  10. 10.
    Schoeneich C (2005) Biochim Biophys Acta 1703:111Google Scholar
  11. 11.
    Giasson BI, Ischiropoulos H, Lee VMY, Trojanowski JQ (2002) Free Radic Biol Med 32:1264CrossRefGoogle Scholar
  12. 12.
    Aksenov MY, Aksenov MV, Butterfield DA, Geddes JW, Markesbery WR (2001) Neuroscience 163:373CrossRefGoogle Scholar
  13. 13.
    Perry G, Raina AK, Nunomura A, Wataya T, Sayre LM, Smith MA (2000) Free Radic Biol Med 28:831CrossRefGoogle Scholar
  14. 14.
    Berlett BS, Stadtman ER (1997) J Biol Chem 272:20313CrossRefGoogle Scholar
  15. 15.
    Penugonda S, Mare S, Lutz P, Banks WA, Ercal N (2006) Toxicol Appl Pharm 216:197CrossRefGoogle Scholar
  16. 16.
    Offen D, Gilgun-Sherki Y, Barhum Y, Benhar M, Grinberg L, Reich R, Melamed E, Atlas D (2004) J Neurochem 89:1241CrossRefGoogle Scholar
  17. 17.
    Scott LE, Orvig C (2009) Chem Rev 109:4885CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364CrossRefGoogle Scholar
  19. 19.
    Zavala-Oseguera C, Alvarez-Idaboy JR, Merino G, Galano A (2009) J Phys Chem A 113:13913CrossRefGoogle Scholar
  20. 20.
    Velez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J, Zapata E, Alarcón G (2009) J Phys Org Chem 22:971CrossRefGoogle Scholar
  21. 21.
    Vega-Rodriguez A, Alvarez-Idaboy JR (2009) Phys Chem Chem Phys 11:7649CrossRefGoogle Scholar
  22. 22.
    Galano A, Alvarez-Idaboy JR (2009) Org Lett 11:5114CrossRefGoogle Scholar
  23. 23.
    Black G, Simmie JM (2010) J Comput Chem 31:1236Google Scholar
  24. 24.
    Furuncuoglu T, Ugur I, Degirmenci I, Aviyente V (2010) Macromolecules 43:1823CrossRefGoogle Scholar
  25. 25.
    Galano A, Macías-Ruvalcaba NA, Campos ONM, Pedraza-Chaverri J (2010) J Phys Chem B 114:6625CrossRefGoogle Scholar
  26. 26.
    Gao T, Andino JM, Alvarez-Idaboy JR (2010) Phys Chem Chem Phys 12:9830CrossRefGoogle Scholar
  27. 27.
    Iuga C, Alvarez-Idaboy J R, Vivier-Bunge A (2011) J Phys Chem A (in press). doi:10.1021/jp201517p
  28. 28.
    Galano A (2011) Phys Chem Chem Phys 13:7147Google Scholar
  29. 29.
    Pérez-González A, Galano A (2011) J Phys Chem B 115:1306CrossRefGoogle Scholar
  30. 30.
    Leon-Carmona JR, Galano A (2011) J Phys Chem B 115:4538CrossRefGoogle Scholar
  31. 31.
    Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., WallingfordGoogle Scholar
  32. 32.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378CrossRefGoogle Scholar
  33. 33.
    Ashcroft RG, Coster HGL, Smith JR (1981) Biochim Biophys Acta 643:191CrossRefGoogle Scholar
  34. 34.
    Naumann R, Jonczyk A, Kopp R, van Esch J, Ringsdorf H, Knoll W, Graber P (1995) Angew Chem Int Ed Engl 34:2056CrossRefGoogle Scholar
  35. 35.
    Raguse B, Braach-Maksvytis V, Cornell BA, King LG, Osman PDJ, Pace RJ, Wieczorek L (1998) Langmuir 14:648CrossRefGoogle Scholar
  36. 36.
    de Heer MI, Mulder P, Korth H–G, Ingold KU, Lusztyk J (2000) J Am Chem Soc 122:2355CrossRefGoogle Scholar
  37. 37.
    Pratt DA, Mills JH, Porter NA (2003) J Am Chem Soc 125:5801CrossRefGoogle Scholar
  38. 38.
    Gregor W, Grabner G, Adelwohrer C, Rosenau T, Gille L (2005) J Org Chem 70:3472CrossRefGoogle Scholar
  39. 39.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) J Phys Chem A 108:4916CrossRefGoogle Scholar
  40. 40.
    Nenadis N, Sigalas MP (2008) J Phys Chem A 112:12196CrossRefGoogle Scholar
  41. 41.
    Martinez A, Rodriguez-Girones MA, Barbosa A, Costas M (2008) J Phys Chem A 112:9037CrossRefGoogle Scholar
  42. 42.
    Okuno Y (1997) Chem Eur J 3:210CrossRefGoogle Scholar
  43. 43.
    Benson SW (1982) The foundations of chemical kinetics. Krieger, MalabarGoogle Scholar
  44. 44.
    Ardura D, Lopez R, Sordo TL (2005) J Phys Chem B 109:23618CrossRefGoogle Scholar
  45. 45.
    Alvarez-Idaboy JR, Reyes L, Cruz J (2006) Org Lett 8:1763CrossRefGoogle Scholar
  46. 46.
    Alvarez-Idaboy JR, Reyes L, Mora-Diez N (2007) Org Biomol Chem 5:3682CrossRefGoogle Scholar
  47. 47.
    Galano A (2007) J Phys Chem A 111:1677CrossRefGoogle Scholar
  48. 48.
    Galano A (2008) J Phys Chem C 112:8922CrossRefGoogle Scholar
  49. 49.
    Galano A, Cruz-Torres A (2008) Org Biomol Chem 6:732CrossRefGoogle Scholar
  50. 50.
    Galano A, Francisco-Márquez M (2008) Chem Phys 345:87CrossRefGoogle Scholar
  51. 51.
    Mora-Diez N, Keller S, Alvarez-Idaboy JR (2009) Org Biomol Chem 7:3682CrossRefGoogle Scholar
  52. 52.
    Eyring H (1935) J Chem Phys 3:107CrossRefGoogle Scholar
  53. 53.
    Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875CrossRefGoogle Scholar
  54. 54.
    Truhlar DG, Hase WL, Hynes JT (1983) J Phys Chem 87:2664CrossRefGoogle Scholar
  55. 55.
    Eckart C (1930) Phys Rev 35:1303CrossRefGoogle Scholar
  56. 56.
    Collins FC, Kimball GE (1949) J Colloid Sci 4:425CrossRefGoogle Scholar
  57. 57.
    Smoluchowski M (1917) Z Phys Chem 92:129Google Scholar
  58. 58.
    Truhlar DG (1985) J Chem Ed 62:104CrossRefGoogle Scholar
  59. 59.
    Einstein A (1905) Ann Phys Leipzig 17:549CrossRefGoogle Scholar
  60. 60.
    Stokes GG (1903) Mathematical and physical papers. Cambridge University Press, CambridgeGoogle Scholar
  61. 61.
    Galano A, Alvarez-Diduk R, Ramirez-Silva MT, Alarcon-Angeles G, Rojas-Hernandez A (2009) Chem Phys 363:13CrossRefGoogle Scholar
  62. 62.
    Chiodo SG, Leopoldini M, Russo N, Toscano M (2010) Phys Chem Chem Phys 12:7662CrossRefGoogle Scholar
  63. 63.
    Leopoldini M, Rondinelli F, Russo N, Toscano M (2010) J Agric Food Chem 58:8862CrossRefGoogle Scholar
  64. 64.
    Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288CrossRefGoogle Scholar
  65. 65.
    Pryor WA (1988) Free Radic Biol Med 4:219CrossRefGoogle Scholar
  66. 66.
    Draganic IG, Draganic ZD (1971) The radiation chemistry of water. Academic Press, New YorkGoogle Scholar
  67. 67.
    Sies H (1985) Oxygen stress. Academic Press, LondonGoogle Scholar
  68. 68.
    Simic MG, Taylor KA, Ward JF, von Sonntag C (1991) Oxygen radicals in biology and medicine. Plenum Press, New YorkGoogle Scholar
  69. 69.
    Davies KJA (1991) Oxidative damage and repair: chemical, biological and medical aspects. Pergamon Press, New YorkGoogle Scholar
  70. 70.
    Sies H (1991) Oxygen stress-oxidants and anti-oxidants. Academic Press, LondonGoogle Scholar
  71. 71.
    Stadtman ER (1993) Annu Rev Biochem 62:797CrossRefGoogle Scholar
  72. 72.
    Von Sonntag C (1987) The chemical basis of radiation biology. Taylor and Francis, LondonGoogle Scholar
  73. 73.
    Marnett LJ (1987) Carcinogenesis 8:1365CrossRefGoogle Scholar
  74. 74.
    Pryor WA (1986) Annu Rev Physiol 48:657CrossRefGoogle Scholar
  75. 75.
    Koopmans T (1933) Physica 1:104CrossRefGoogle Scholar
  76. 76.
    Linderberg J, Öhrn Y (2004) Propagators in quantum chemistry, 2nd edn. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  77. 77.
    von Niessen W, Schirmer J, Cederbaum LS (1984) Comput Phys Rep 1:57CrossRefGoogle Scholar
  78. 78.
    Herman MF, Freed KF, Yeager DL (1981) Adv Chem Phys 48:1CrossRefGoogle Scholar
  79. 79.
    Ortiz JV (1999) Adv Quantum Chem 35:33CrossRefGoogle Scholar
  80. 80.
    Zakrzewski VG, Ortiz JV (1994) Int J Quantum Chem 28:23CrossRefGoogle Scholar
  81. 81.
    Zakrzewski VG, Ortiz JV (1995) Int J Quantum Chem 53:583CrossRefGoogle Scholar
  82. 82.
    Zakrzewski VG, Ortiz JV, Nichols JA, Heryadi D, Yeager DL, Golab JT (1996) Int J Quantum Chem 60:29CrossRefGoogle Scholar
  83. 83.
    Ortiz JV (1996) J Chem Phys 104:7599CrossRefGoogle Scholar
  84. 84.
    Ferreira AM, Seabra G, Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2001) In: J Cioslowski (ed) Quantum-mechanical prediction of thermochemical data, vol 131. Kluwer, DordrechtGoogle Scholar
  85. 85.
    Zakjevskii VV, King SJ, Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2006) J Am Chem Soc 128:13350CrossRefGoogle Scholar
  86. 86.
    Zakjevskii VV, Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2007) Int J Quantum Chem 107:2266CrossRefGoogle Scholar
  87. 87.
    Flores-Moreno R, Ortiz JV (2009) J Chem Phys 131:124110CrossRefGoogle Scholar
  88. 88.
    Mayer JM (2004) Annu Rev Phys Chem 55:363CrossRefGoogle Scholar
  89. 89.
    Mayer JM, Hrovat DA, Thomas JL, Borden WT (2002) J Am Chem Soc 124:11142CrossRefGoogle Scholar
  90. 90.
    Young D (2001) Computational chemistry: a practical guide for applying techniques to real world problems. Wiley, New York, pp 227–228Google Scholar
  91. 91.
    Allodi MA, Kirschner KN, Shields GC (2008) J Phys Chem A 112:7064CrossRefGoogle Scholar
  92. 92.
    Galano A, Francisco-Márquez M (2009) J Phys Chem B 113:16077CrossRefGoogle Scholar
  93. 93.
    Galano A, Francisco-Márquez M (2009) J Phys Chem B 113:11338CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Departamento de Química, División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana-IztapalapaVicentinaMéxico

Personalised recommendations