Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 291–301 | Cite as

Computational characterization of organic photovoltaic devices

  • Yuan Shang
  • Qikai Li
  • Lingyi Meng
  • Dong Wang
  • Zhigang ShuaiEmail author
Feature Article


We present recent progresses on applying the theoretical models and computational tools in assessing the performance of organic solar cells, especially the bulk heterojunction solar cells. Both the continuum device model and the dynamic Monte Carlo model are developed to investigate the photocurrent-voltage characteristics based on the exciton and charge carrier dynamics. Insights into key factors influencing the organic photovoltaic performances have been gained from these studies.


Organic solar cells Photovoltaic devices Bulk heterojunction Continuum device model Dynamic Monte Carlo model 



Collaborations with Prof. Alison Walker of University of Bath on the dynamic Monte Carlo simulations are greatly acknowledged. Extensive discussions with Prof. Xiaowei Zhan and Prof. Yongfang Li have been very helpful. This work was supported by the National Natural Science Foundation of China (grant nos. 20920102031, and 20903060) and the Ministry of Science and Technology of China through 973 program.


  1. 1.
    Coakley KM, McGehee MD (2004) Chem Mat 16:4533CrossRefGoogle Scholar
  2. 2.
    Peet J, Senatore ML, Heeger AJ, Bazan GC (2009) Adv Mater 21:1521CrossRefGoogle Scholar
  3. 3.
    Krebs FC (2009) Sol Energy Mater Sol Cells 93:394CrossRefGoogle Scholar
  4. 4.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Science 258:1474CrossRefGoogle Scholar
  5. 5.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789CrossRefGoogle Scholar
  6. 6.
    Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Nature 376:498CrossRefGoogle Scholar
  7. 7.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Science 317:222CrossRefGoogle Scholar
  8. 8.
    Tang CW (1986) Appl Phys Lett 48:183CrossRefGoogle Scholar
  9. 9.
    Po R, Maggini M, Camaioni N (2010) J Phys Chem C 114:695CrossRefGoogle Scholar
  10. 10.
    Chamberlain GA (1983) Solar Cells 8:47CrossRefGoogle Scholar
  11. 11.
    Nunzi JM (2002) C R Phys 3:523CrossRefGoogle Scholar
  12. 12.
    Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Nat Photonics 3:297CrossRefGoogle Scholar
  13. 13.
    Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP (2010) Adv Mater 22:E135CrossRefGoogle Scholar
  14. 14.
    Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009) Nat Photonics 3:649CrossRefGoogle Scholar
  15. 15.
    Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CL (2006) Adv Mater 18:789CrossRefGoogle Scholar
  16. 16.
    Koster LJA, Mihailetchi VD, Blom PWM (2006) Appl Phys Lett 88:093511CrossRefGoogle Scholar
  17. 17.
    Dennler G, Scharber MC, Ameri T, Denk P, Forberich K, Waldauf C, Brabec CJ (2008) Adv Mater 20:579CrossRefGoogle Scholar
  18. 18.
    Sun SS, Sariciftci NS (2005) Organic photovoltaics: mechanisms, materials, and devices. Taylor & Francis Group, Boca RatonGoogle Scholar
  19. 19.
    Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, New YorkGoogle Scholar
  20. 20.
    Crone BK, Davids PS, Campbell IH, Smith DL (2000) J Appl Phys 87:1974CrossRefGoogle Scholar
  21. 21.
    Ruhstaller B, Carter SA, Barth S, Riel H, Riess W, Scott JC (2001) J Appl Phys 89:4575CrossRefGoogle Scholar
  22. 22.
    Gregg BA, Hanna MC (2003) J Appl Phys 93:3605CrossRefGoogle Scholar
  23. 23.
    Barker JA, Ramsdale CM, Greenham NC (2003) Phys Rev B 67:075205CrossRefGoogle Scholar
  24. 24.
    Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM (2005) Phys Rev B 72:085205CrossRefGoogle Scholar
  25. 25.
    Buxton GA, Clarke N (2006) Phys Rev B 74:085207CrossRefGoogle Scholar
  26. 26.
    Hwang I, Greenham NC (2008) Nanotechnology 19:424012CrossRefGoogle Scholar
  27. 27.
    Maturova K, Kemerink M, Wienk MM, Charrier DSH, Janssen RAJ (2009) Adv Funct Mater 19:1379CrossRefGoogle Scholar
  28. 28.
    Maturova K, van Bavel SS, Wienk MM, Janssen RAJ, Kemerink M (2009) Nano Lett 9:3032CrossRefGoogle Scholar
  29. 29.
    Hwang I, McNeill CR, Greenham NC (2009) J Appl Phys 106:094506CrossRefGoogle Scholar
  30. 30.
    Maturova K, Janssen RAJ, Kemerink M (2010) Acs Nano 4:1385CrossRefGoogle Scholar
  31. 31.
    Shieh JT, Liu CH, Meng HF, Tseng SR, Chao YC, Horng SF (2010) J Appl Phys 107:084503CrossRefGoogle Scholar
  32. 32.
    Nam YM, Huh J, Jo WH (2010) Sol Energy Mater Sol Cells 94:1118CrossRefGoogle Scholar
  33. 33.
    Morteani AC, Sreearunothai P, Herz LM, Friend RH, Silva C (2004) Phys Rev Lett 92:247402CrossRefGoogle Scholar
  34. 34.
    De S, Pascher T, Maiti M, Jespersen KG, Kesti T, Zhang FL, Inganas O, Yartsev A, Sundstrom V (2007) J Am Chem Soc 129:8466CrossRefGoogle Scholar
  35. 35.
    Veldman D, Ipek O, Meskers SCJ, Sweelssen J, Koetse MM, Veenstra SC, Kroon JM, van Bavel SS, Loos J, Janssen RAJ (2008) J Am Chem Soc 130:7721CrossRefGoogle Scholar
  36. 36.
    Drori T, Sheng CX, Ndobe A, Singh S, Holt J, Vardeny ZV (2008) Phys Rev Lett 101:037401CrossRefGoogle Scholar
  37. 37.
    Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15CrossRefGoogle Scholar
  38. 38.
    Braun CL (1984) J Chem Phys 80:4157CrossRefGoogle Scholar
  39. 39.
    Gummel HK (1964) IEEE Trans Electron Devices 11:455CrossRefGoogle Scholar
  40. 40.
    Scharfet Dl, Gummel HK (1969) IEEE Trans Electron Devices 16:64CrossRefGoogle Scholar
  41. 41.
    Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM (2004) Phys Rev Lett 93:216601CrossRefGoogle Scholar
  42. 42.
    Onsager L (1934) J Chem Phys 2:599CrossRefGoogle Scholar
  43. 43.
    Wojcik M, Tachiya M (2009) J Chem Phys 130:104107CrossRefGoogle Scholar
  44. 44.
    Langevin P (1903) Ann Chim Phys 28:433Google Scholar
  45. 45.
    Koster LJA, Mihailetchi VD, Blom PWM (2006) Appl Phys Lett 88:052104CrossRefGoogle Scholar
  46. 46.
    Adriaenssens GJ, Arkhipov VI (1997) Solid State Commun 103:541CrossRefGoogle Scholar
  47. 47.
    Deibel C, Wagenpfahl A, Dyakonov V (2009) Phys Rev B 80:075203CrossRefGoogle Scholar
  48. 48.
    Juska G, Genevicius K, Nekrasas N, Sliauzys G, Osterbacka R (2009) Appl Phys Lett 95:013303CrossRefGoogle Scholar
  49. 49.
    Hilczer M, Tachiya M (2010) J Phys Chem C 114:6808CrossRefGoogle Scholar
  50. 50.
    Buxton GA, Clarke N (2007) Model Simul Mater Sci Eng 15:13CrossRefGoogle Scholar
  51. 51.
    Williams J, Walker AB (2008) Nanotechnology 19:424011CrossRefGoogle Scholar
  52. 52.
    Watkins PK, Walker AB, Verschoor GLB (2005) Nano Lett 5:1814CrossRefGoogle Scholar
  53. 53.
    Marsh RA, Groves C, Greenham NC (2007) J Appl Phys 101:083509CrossRefGoogle Scholar
  54. 54.
    Yang F, Forrest SR (2008) Acs Nano 2:1022CrossRefGoogle Scholar
  55. 55.
    Meng LY, Shang Y, Li QK, Li YF, Zhan XW, Shuai ZG, Kimber RGE, Walker AB (2010) J Phys Chem B 114:36CrossRefGoogle Scholar
  56. 56.
    Adams CD, Srolovitz DJ, Atzmon M (1993) J Appl Phys 74:1707CrossRefGoogle Scholar
  57. 57.
    Peumans P, Uchida S, Forrest SR (2003) Nature 425:158CrossRefGoogle Scholar
  58. 58.
    Frost JM, Cheynis F, Tuladhar SM, Nelson J (2006) Nano Lett 6:1674CrossRefGoogle Scholar
  59. 59.
    Gunes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324CrossRefGoogle Scholar
  60. 60.
    Sun SS (2003) Sol Energy Mater Sol Cells 79:257CrossRefGoogle Scholar
  61. 61.
    Gillespie DT (1976) J Comput Phys 22:403CrossRefGoogle Scholar
  62. 62.
    Jansen APJ (1995) Comput Phys Commun 86:1CrossRefGoogle Scholar
  63. 63.
    Lukkien JJ, Segers JPL, Hilbers PAJ, Gelten RJ, Jansen APJ (1998) Phys Rev E 58:2598CrossRefGoogle Scholar
  64. 64.
    Shang Y, Li Q, Meng L, Wang D, Shuai Z (2010) Appl Phys Lett 97:143511CrossRefGoogle Scholar
  65. 65.
    Tromholt T, Katz EA, Hirsch B, Vossier A, Krebs FC (2010) Appl Phys Lett 96:073501CrossRefGoogle Scholar
  66. 66.
    Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM (2005) Appl Phys Lett 86:123509CrossRefGoogle Scholar
  67. 67.
    Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Adv Funct Mater 11:374CrossRefGoogle Scholar
  68. 68.
    Würfel P (2004) Physics of solar cells: from principles to new concepts. Wiley-VCH, WeinheimGoogle Scholar
  69. 69.
    Riede M, Mueller T, Tress W, Schueppel R, Leo K (2008) Nanotechnology 19:424001CrossRefGoogle Scholar
  70. 70.
    Mandoc MM, Koster LJA, Blom PWM (2007) Appl Phys Lett 90:133504CrossRefGoogle Scholar
  71. 71.
    Deibel C, Wagenpfahl A, Dyakonov V (2008) Phys Status Solidi-Rapid Res Lett 2:175CrossRefGoogle Scholar
  72. 72.
    Zhan XW, Tan ZA, Domercq B, An ZS, Zhang X, Barlow S, Li YF, Zhu DB, Kippelen B, Marder SR (2007) J Am Chem Soc 129:7246CrossRefGoogle Scholar
  73. 73.
    Hou JH, Tan ZA, Yan Y, He YJ, Yang CH, Li YF (2006) J Am Chem Soc 128:4911CrossRefGoogle Scholar
  74. 74.
    Yi YP, Coropceanu V, Bredas JL (2009) J Am Chem Soc 131:15777CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yuan Shang
    • 1
  • Qikai Li
    • 1
  • Lingyi Meng
    • 1
  • Dong Wang
    • 2
  • Zhigang Shuai
    • 2
    Email author
  1. 1.Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science (BNLMS), Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.MOE Key Laboratory of Organic Opto-Electronics and Molecular Engineering, Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations