Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 631–650 | Cite as

Mössbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury

  • Stefan Knecht
  • Samuel Fux
  • Robert van Meer
  • Lucas Visscher
  • Markus Reiher
  • Trond Saue
Regular Article

Abstract

The electrostatic contribution to the Mössbauer isomer shift of mercury for the series HgF n (n = 1, 2, 4) with respect to the neutral atom has been investigated in the framework of four- and two-component relativistic theory. Replacing the integration of the electron density over the nuclear volume by the contact density (that is, the electron density at the nucleus) leads to a 10% overestimation of the isomer shift. The systematic nature of this error suggests that it can be incorporated into a correction factor, thus justifying the use of the contact density for the calculation of the Mössbauer isomer shift. The performance of a large selection of density functionals for the calculation of contact densities has been assessed by comparing with finite-field four-component relativistic coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] calculations. For the absolute contact density of the mercury atom, the Density Functional Theory (DFT) calculations are in error by about 0.5%, a result that must be judged against the observation that the change in contact density along the series HgF n (n = 1, 2, 4), relevant for the isomer shift, is on the order of 50 ppm with respect to absolute densities. Contrary to previous studies of the 57Fe isomer shift (F Neese, Inorg Chim Acta 332:181, 2002), for mercury, DFT is not able to reproduce the trends in the isomer shift provided by reference data, in our case CCSD(T) calculations, notably the non-monotonous decrease in the contact density along the series HgF n (n = 1, 2, 4). Projection analysis shows the expected reduction of the 6s 1/2 population at the mercury center with an increasing number of ligands, but also brings into light an opposing effect, namely the increasing polarization of the 6s 1/2 orbital due to increasing effective charge of the mercury atom, which explains the non-monotonous behavior of the contact density along the series. The same analysis shows increasing covalent contributions to bonding along the series with the effective charge of the mercury atom reaching a maximum of around +2 for HgF4 at the DFT level, far from the formal charge +4 suggested by the oxidation state of this recently observed species. Whereas the geometries for the linear HgF2 and square-planar HgF4 molecules were taken from previous computational studies, we optimized the equilibrium distance of HgF at the four-component Fock-space CCSD/aug-cc-pVQZ level, giving spectroscopic constants r e = 2.007 Å and ω e = 513.5 cm−1.

Keyword

Mössbauer spectroscopy Relativistic quantum chemistry Density functional theory Coupled cluster Contact density Mercury compounds Picture change effects 

Notes

Acknowledgments

We dedicate this paper to Pekka Pyykkö, a pioneer of relativistic quantum chemistry. With a unique combination of impressive chemical insight and judicious pragmatism, he has picked many of the bigger berries in the field, but graciously left some for others as well. We would like to thank one of the unknown referee’s for her/his elaborate report and comments which led to the discovery of an initial computational problem in the calculation of reaction energies and contact densities of the HgF4 compound. This issue has then been solved for the final version of this paper. S.K. thanks l’Université de Strasbourg (UDS) for a post-doctoral research grant and the supercomputer centers at ETH Zürich as well as UDS for ample computing time. M.R. and S.F. gratefully acknowledge financial support by ETH Zürich (Grant TH-26 07-3) and the Swiss national science foundation SNF (project no. 200020-132542/1). L.V. has been supported by NWO through the VICI programme.

Supplementary material

214_2011_911_MOESM1_ESM.pdf (71 kb)
PDF (71 KB)

References

  1. 1.
    Pyykkö P, Desclaux J-P (1979) Relativity and the periodic system of elements. Acc Chem Res 12(8):276–281Google Scholar
  2. 2.
    Pitzer KS (1979) Relativistic effects on chemical properties. Acc Chem Res 12(8):271–276Google Scholar
  3. 3.
    Pyykkö P (1988) Relativistic effects in structural chemistry. Chem Rev 88:563–594Google Scholar
  4. 4.
    Mössbauer RL (1958) Kernresonanzabsorption von Gammastrahlung in 191Ir. Naturwissenschaften 45:538–539Google Scholar
  5. 5.
    Mössbauer RL (1958) Kernresonanzfluoreszenz von Gammastrahlung in 191Ir. Z Phys 151:124–143Google Scholar
  6. 6.
    Greenwood NN, Gibb TC (eds) (1971) Mössbauer Spectroscopy. Chapman and Hall, LondonGoogle Scholar
  7. 7.
    Gibb TC (eds) (1976) Principles of Mössbauer spectroscopy. Chapman and Hall, LondonGoogle Scholar
  8. 8.
    Gütlich P, Link R, Trautwein A (eds) (1978) Mössbauer spectroscopy and transition metal chemistry. Springer, BerlinGoogle Scholar
  9. 9.
    Gütlich P, Schröder C (2010) Mössbauer spectroscopy. Bunsenmagazin 12:4–22Google Scholar
  10. 10.
    Kato T (1957) On the eigenfunctions of many-particle systems in quantum mechanics. Comm Pure Appl Math 10:151Google Scholar
  11. 11.
    Andrae D (2000) Finite nuclear charge density distributions in electronic structure calculations for atoms and molecules. Phys Rep 336:414–525Google Scholar
  12. 12.
    Andrae D, Reiher M, Hinze J (2000) A comparative study of finite nucleus models for low-lying states of few-electron high-Z atoms. Chem Phys Lett 320:457–468Google Scholar
  13. 13.
    Andrae D (2002) Nuclear charge density distributions in quantum chemistry. In: Schwerdtfeger P (ed) Relativistic electronic structure theory, part 1: fundamentals. Elsevier, AmsterdamGoogle Scholar
  14. 14.
    Dyall KG, Fægri K (2007) Introduction to relativistic quantum chemistry. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Quiney HM, Laerdahl JK, Faegri K, Saue T (1998) Ab initio Dirac-Hartree-Fock calculations of chemical properties and PT-odd effects in thallium fluoride. Phys Rev A 57:920Google Scholar
  16. 16.
    Andrae D, Reiher M, Hinze J (2000) Numerical electronic structure calculations for atoms. II. The generalized variable transformation in relativistic calculations. Int J Quantum Chem 76:473–499Google Scholar
  17. 17.
    Mastalerz R, Lindh R, Reiher M (2008) The Douglas–Kroll–Hess electron density at an atomic nucleus. Chem Phys Lett 465:157–164Google Scholar
  18. 18.
    Mastalerz R, Widmark P-O, Roos B-O, Lindh R, Reiher M (2010) Basis set representation of the electron density at an atomic nucleus. J Chem Phys 133:144111Google Scholar
  19. 19.
    Filatov M (2007) On the calculation of Mössbauer isomer shift. J Chem Phys 127:084101Google Scholar
  20. 20.
    Kurian R, Filatov M (2008) DFT approach to the calculation of Mössbauer isomer shifts. J Chem Theory Comput 4:278–285Google Scholar
  21. 21.
    Kurian R, Filatov M (2009) Calibration of 119Sn isomer shift using ab initio wave function methods. J Chem Phys 130:124121Google Scholar
  22. 22.
    Filatov M (2009) First principles calculation of Mössbauer isomer shift. Coord Chem Rev 253:594–605Google Scholar
  23. 23.
    Kurian R, Filatov M (2010) Calibration of 57Fe isomer shift from ab initio calculations: can theory and experiment reach an agreement? Phys Chem Chem Phys 12:2758–2762Google Scholar
  24. 24.
    Neese F (2002) Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory. Inorg Chim Acta 337:181–192Google Scholar
  25. 25.
    Römelt M, Ye S, Neese F (2009) Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: meta-GGa and double-hybrid functionals. Inorg Chem 48:784–785Google Scholar
  26. 26.
    Carlson DE, Temperley AA (1969) Resonane absorption of the 32.2 keV gamma ray of 201Hg. Phys Lett B 30:322–323Google Scholar
  27. 27.
    Walcher D (1971) Mössbaueruntersuchungen an 195Pt und 201Hg. Z Phys 246:123–150Google Scholar
  28. 28.
    Wurtinger W (1976) Mössbauer measurements on Hg-Pt-alloys using the 158 keV transition in 199Hg. J Phys C 6:697–701Google Scholar
  29. 29.
    Koch W, Wagner FE, Flach D, Kalvius GM (1976) Mössbauer experiments with high energy gamma rays: the 158 keV transition in 199Hg. J Phys C6:693–695Google Scholar
  30. 30.
    Wurtinger W, Kankeleit E (1979) 199Hg Mössbauer measurements on mercury alloys and Hg-fluorides. Z Phys A 293:219–227Google Scholar
  31. 31.
    Lyle SJ, Westall WA (1984) A Mössbauer spectroscopic study of the Eu-Hg system. J Less-Common Met 99:265–272Google Scholar
  32. 32.
    Laubach S, Schwalbach P, Kankeleit E, Hasselbach K (1985) Electric hyperfine interaction in 199Hg fluorides. Hyperfine Interact 23:259–271Google Scholar
  33. 33.
    Iranzo O, Thulstrup P, Ryu S-B, Hemmingsen L, Pecoraro V (2007) The application of 199Hg NMR and 199mHg perturbed angular correlation (PAC) spectroscopy to define the biological chemistry of HgII: a case study with designed two- and three-stranded coiled coils. Chem Eur J 13:9178–9190Google Scholar
  34. 34.
    Bieroń J, Pyykkö P, Jönsson P (2005) Nuclear quadrupole moment of 201Hg. Phys Rev A 71:012502Google Scholar
  35. 35.
    Moon PB (1950) The hard components of scattered gamma-rays. Proc Phys Soc 63:1189Google Scholar
  36. 36.
    Malmfors KG (1953) Nuclear resonance scattering of gamma-rays. Arkiv för Fysik 6:49Google Scholar
  37. 37.
    Khalizov AF, Viswanathan B, Larregaray P, Ariya PA (2003) A theoretical study on the reactions of Hg with halogens: atmospheric implications. J Phys Chem A 107:6360–6365Google Scholar
  38. 38.
    Liu W, Franke R, Dolg M (1999) Relativistic ab initio and density functional theory calculations on the mercury fluorides: is HgF4 thermodynamically stable? Chem Phys Lett 302:231–239Google Scholar
  39. 39.
    Riedel S, Straka M, Kaupp M (2004) Validation of density functional methods for computing structures and energies of mercury(IV) complexes. Phys Chem Chem Phys 6:1122–1127Google Scholar
  40. 40.
    Kaupp M, von Schnering HG (1993) Gaseous mercury(IV) fluoride, HgF4: an ab initio study. Angew Chem Int Ed 32:861–863Google Scholar
  41. 41.
    Wang X, Andrews L, Riedel S, Kaupp M (2007) Mercury is a transition metal: the first experimental evidence for HgF4. Angew Chem 119:8523–8527Google Scholar
  42. 42.
    Rooms JF, Wilson AV, Harvey I, Bridgeman AJ, Young NA (2008) Mercury-fluorine interactions: a matrix isolation investigation \(\hbox{Hg}\hdots F_2,\,\hbox{HgF}_2\) and HgF4 in argon matrices. Phys Chem Chem Phys 10:4594–4605Google Scholar
  43. 43.
    Pyykkö P, Straka M, Patzschke M (2002) HgH4 and HgH6: further candidates for high-valent mercury compounds. Chem Comm 16:1728–1729Google Scholar
  44. 44.
    Shenoy GK, Wagner FE (1978) Mössbauer isomer shifts. North-Holland Publishing Company, AmsterdamGoogle Scholar
  45. 45.
    Rosenthal JE, Breit G (1932) The isotope shift in hyperfine structure. Phys Rev 41:459–470Google Scholar
  46. 46.
    Breit G (1958) Theory of isotope shift. Rev Mod Phys 30:507–516Google Scholar
  47. 47.
    Shirley DA (1964) Application and interpretation of isomer shifts. Rev Mod Phys 36:339–351Google Scholar
  48. 48.
    Bodmer AR (1953) Nuclear scattering of electrons and isotope shift. Proc Phys Soc A 66:1041–1058Google Scholar
  49. 49.
    Fricke B, Waber JT (1972) Calculation of isomer shift in Mössbauer spectroscopy. Phys Rev B 5:3445Google Scholar
  50. 50.
    Baerends EJ, Schwarz WHE, Schwerdtfeger P, Snijders JG (1990) Relativistic atomic orbital contractions and expansions—magnitudes and explanations. J Phys B: At Mol Opt Phys 23:3225–3240Google Scholar
  51. 51.
    Kellö V, Sadlej AJ (1998) Picture change and calculations of expectation values in approximative relativistic theories. Int J Quant Chem 68:159Google Scholar
  52. 52.
    Dyall KG (2000) Relativistic electric and magnetic property operators for two-component transformed hamiltonians. Int J Quant Chem 78:412Google Scholar
  53. 53.
    Pernpointer M, Schwerdtfeger P (1998) Accurate nuclear quadrupole moments of the gallium isotopes 69Ga and 71Ga within the PCNQM model. Chem Phys Lett 295:347Google Scholar
  54. 54.
    van Wüllen C, Michauk C (2005) Accurate and efficient treatment of two-electron contributions in quasirelativistic high-order Douglas-Kroll density-functional calculations. J Chem Phys 123:204113Google Scholar
  55. 55.
    Seino J, Uesugi W, Hada M (2010) Expectation values in two-component relativistic theories. J Chem Phys 132:164108Google Scholar
  56. 56.
    Bučinský L, Biskupič S, Jayatilaka D (2010) Picture change error correction of radon atom electron density. J Chem Phys 133:174125Google Scholar
  57. 57.
    Bast R, Koers A, Gomes ASP, Iliaš M, Visscher L, Schwerdtfeger P, Saue T (2010) Analysis of parity violation in chiral molecules. Phys Chem Chem Phys 13:854Google Scholar
  58. 58.
    Dubillard S, Rota J-B, Saue T, Fægri K (2007) Bonding analysis using localized relativistic orbitals: water, the ultrarelativistic case and the heavy homologues H2X (X = Te, Po, eka-Po). J Chem Phys 124:154307Google Scholar
  59. 59.
    Grant IP, Quiney HM (1988) Foundations of the relativistic theory of atomic and molecular structure. Adv At Mol Phys 23:37–86Google Scholar
  60. 60.
    Visscher L, Lee TJ, Dyall KG (1996) Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples. J Chem Phys 105:8769Google Scholar
  61. 61.
    Pernpointner M, Visscher L (2003) Parallelization of four-component calculations. II. Symmetry-driven parallelization of the 4-Spinor CCSD algorithm. J Comp Chem 24:754Google Scholar
  62. 62.
    Lee TJ, Taylor PR (1989) A diagnostic for determining the quality of single-reference electron correlation methods. Int J Quantum Chem Symp 23:199Google Scholar
  63. 63.
    Visscher L, Eliav E, Kaldor U (2001) Formulation and implementation of the relativistic Fock-space coupled-cluster method for molecules. J Chem Phys 115:9720Google Scholar
  64. 64.
    Christiansen O, Jørgensen P, Hättig C (1998) Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy. Int J Quantum Chem 68:1Google Scholar
  65. 65.
    Heßelmann A, Jansen G (1999) Molecular properties from coupled-cluster Brueckner orbitals. Chem Phys Lett 315:248–256Google Scholar
  66. 66.
    Knecht S, Sørensen LK, Jensen HJ Aa, Fleig T, Marian CM (2010) Accurate calculations of the ground state and low-lying excited states of the (RbBa)+ molecular ion, a proposed system for ultracold reactive collisions. J Phys B: At Mol Opt Phys 43:055101Google Scholar
  67. 67.
    Jacob CR, Visscher L, Thierfelder C, Schwerdtfeger P (2007) Nuclear quadrupole moment of 139La from relativistic electronic structure calculations of the electric field gradients in LaF, LaCl, LaBr, and LaI. J Chem Phys 127:204303Google Scholar
  68. 68.
    Pernpointner M, Visscher L (2001) Nuclear quadrupole moments for Al-27 and Ga-69 derived from four-component molecular coupled cluster calculations. J Chem Phys 114:10389Google Scholar
  69. 69.
    Hildebrand FB (1974) Introduction to numerical analysis. Dover Publications Inc, New YorkGoogle Scholar
  70. 70.
    Dirac PAM (1930) Note on exchange phenomena in the Thomas atom. Proc Roy Soc London 26:376Google Scholar
  71. 71.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211Google Scholar
  72. 72.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100Google Scholar
  73. 73.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824Google Scholar
  74. 74.
    Lee CT, Yang WT, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789Google Scholar
  75. 75.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206Google Scholar
  76. 76.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J Phys Chem 98:11623–11627Google Scholar
  77. 77.
    Hertwig RH, Koch W (1997) On the parametrization of the local correlation functional: what is Becke-3-LYP? Chem Phys Lett 268:345–351Google Scholar
  78. 78.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57Google Scholar
  79. 79.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868Google Scholar
  80. 80.
    Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985Google Scholar
  81. 81.
    Lindh R, Malmqvist PA, Galgiardi L (2001) Molecular integrals by numerical quadrature. I. Radial integration. Theor Chem Acc 106:178Google Scholar
  82. 82.
    Iliaš Miroslav, Saue Trond (2007) An infinite-order two-component relativistic hamiltonian by a simple one-step transformation. J Chem Phys 126:064102Google Scholar
  83. 83.
    Dyall KG (1994) An exact separation of the spin-free and spin-dependent terms of the Dirac-Coulomb-Breit Hamiltonian. J Chem Phys 100:2118Google Scholar
  84. 84.
    Kutzelnigg W (1984) Basis set expansion of the Dirac operator without variational collaps. Int J Quantum Chem 25:107Google Scholar
  85. 85.
    Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742–3748Google Scholar
  86. 86.
    Wolf A, Reiher M, Hess BA (2002) The generalized Douglas–Kroll–Hess transformation. J Chem Phys 117:9215–9226Google Scholar
  87. 87.
    Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. I. General theory. J Chem Phys 121:2037–2047Google Scholar
  88. 88.
    Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas–Kroll–Hess transformation up to arbitrary order. J Chem Phys 121:10945–10956Google Scholar
  89. 89.
    Wolf A, Reiher M (2006) Exact decoupling of the Dirac Hamiltonian. III. Molecular properties. J Chem Phys 124:064102Google Scholar
  90. 90.
    Wolf A, Reiher M (2006) Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas–Kroll–Hess theory up to arbitrary order. J Chem Phys 124:064103Google Scholar
  91. 91.
    Reiher M (2006) Douglass–Kroll–Hess theory: a relativistic electrons-only theory for chemistry. Theor Chem Acc 116:241–252Google Scholar
  92. 92.
    Lévy-Leblond J-M (1967) Nonrelativistic particles and wave equations. Commun Math Phys 6:286Google Scholar
  93. 93.
    AMFI: an atomic mean-field code (1996) B. Schimmelpfennig, Stockholm, SwedenGoogle Scholar
  94. 94.
    Hess BA, Marian CM, Wahlgren U, Gropen O (1996) A mean-field spin-orbit method applicable to correlated wavefunctions. Chem Phys Lett 251:365–371Google Scholar
  95. 95.
    Visscher L, Saue T (2000) Approximate relativistic electronic structure methods based on the quaternion modified Dirac equation. J Chem Phys 113:3996Google Scholar
  96. 96.
    DIRAC, a relativistic ab initio electronic structure program, Release DIRAC10 (2010) written by Saue T, Visscher L, Jensen HJ Aa, with contributions from Bast R, Dyall KG, Ekström U, Eliav E, Enevoldsen T, Fleig T, Gomes ASP, Henriksson J, Iliaš M, Jacob Ch R, Knecht S, Nataraj HS, Norman P, Olsen J, Pernpointner M, Ruud K, Schimmelpfennnig B, Sikkema J, Thorvaldsen A, Thyssen J, Villaume S, Yamamoto S (see http://dirac.chem.vu.nl)
  97. 97.
    Aquilante F, De Vico L, Ferre N, Ghigo G, Malmqvist P-A, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos B-O, Serrano-Andres L, Urban M, Veryazov V, Lindh R (2010) Software news and update MOLCAS 7: the next generation. J Comput Chem 31:224–247Google Scholar
  98. 98.
    Sikkema J, Visscher L, Saue T, Iliaš M (2009) The molecular mean-field approach for correlated calculations. J Chem Phys 131:124116Google Scholar
  99. 99.
    Saue T, Visscher L (2003) Four-component electronic structure methods for molecules. In: Wilson S, Kaldor U (eds) Theoretical chemistry and physics of heavy and superheavy elements. Kluwer, Dordrecht, p 211Google Scholar
  100. 100.
    Visscher L, Dyall KG (1997) Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions. At Data Nucl Data Tables 67:2007Google Scholar
  101. 101.
    Dyall KG (2004) Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf-Hg. Theor Chem Acc 112:403–409Google Scholar
  102. 102.
    Dyall KG, Gomes ASP (2010) Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf-Hg. Theor Chem Acc 125:97–100Google Scholar
  103. 103.
    Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007Google Scholar
  104. 104.
    Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2005) New relativistic ANO basis sets for transition metal atoms. J Phys Chem A 109:6575–6579Google Scholar
  105. 105.
    Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2005) New relativistic ANO basis sets for actinide atoms. Chem Phys Lett 409:295–299Google Scholar
  106. 106.
    Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O, Borin AC (2008) New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce Diatom and LuF3. J Phys Chem A 112:11431–11435Google Scholar
  107. 107.
    Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) GRASP: a general-purpose relativistic atomic structure program. Comput Phys Commun 55:425–456Google Scholar
  108. 108.
    Kim J, Ihee H, Lee YS (2010) Spin-orbit density functional and ab initio study of HgXn (X = F, Cl, Br, and I; n=1, 2, and 4). J Chem Phys 133:144309Google Scholar
  109. 109.
    Riedel S, Kaupp M, Pyykkö P (2008) Quantum chemical study of trivalent group 12 fluorides. Inorg Chem 47:3379–3383Google Scholar
  110. 110.
    Cremer D, Kraka E, Filatov M (2008) Bonding in mercury molecules described by the normalized elimination of the small component and coupled cluster theory. Chem Phys Chem 9:2510–2521Google Scholar
  111. 111.
    Schwerdtfeger P, Boyd PDW, Brienne S, McFeaters JS, Dolg M, Liao M-S, Schwarz WHE (1993) The mercury-mercury bond in inorganic and organometallic compunds. A theoretical study. Inorg Chim Acta 213:233–246Google Scholar
  112. 112.
    Kaupp M, Dolg M, von Schnering HG (1994) Oxidation state +IV in group 12 chemistry. Ab Initio study of zinc(IV), cadmium(IV), and mercury(IV) fluorides. Inorg Chem 33:2122–2131Google Scholar
  113. 113.
    NIST Chemistry WebBook (version 69, 2008) National Institute of Standards and Technology, Gaithersburg, MD. (Retrieved 14th Oct 2010)Google Scholar
  114. 114.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.1. Gaussian Inc. Wallingford CTGoogle Scholar
  115. 115.
    Visscher L (1997) Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction. Theor Chem Acc 98:68Google Scholar
  116. 116.
    Kállay M, Surján PR (2001) Higher excitations in coupled-cluster theory. J Chem Phys 115:2945Google Scholar
  117. 117.
    Nataraj HS, Kállay M, Visscher L (2010) General implementation of the relativistic coupled-cluster method. J Chem Phys 133:234109Google Scholar
  118. 118.
    Mrcc, a string-based quantum chemical program suite written by M. Kállay. See also Ref. 116 as well as http://www.mrcc.hu/
  119. 119.
    Zhao Y, Truhlar DG (2008) The M06 Suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and twelve other functionals. Theor Chem Acc 120:215. [Erratum: ibid. 119:525 (2008)]Google Scholar
  120. 120.
    MacDonald AH, Vosko SH (1979) A relativistic density functional formalism. J Phys B 12:2977Google Scholar
  121. 121.
    Ramana MV, Rajagopal AK (1981) Inhomogeneous relativistic electron gas: correlation potential. Phys Rev A 24:1689–1695Google Scholar
  122. 122.
    Ramana MV, Rajagopal AK (1983) Inhomogeneous relativistic electron-systems—a density-functional formalism. Adv Chem Phys 54:231Google Scholar
  123. 123.
    Engel E, Keller S, Bonetti A Facco, Müller H, Dreizler RM (1995) Local and nonlocal relativistic exchange-correlation energy functionals: comparison to relativistic optimized-potential-model results. Phys Rev A 52:2750–2764Google Scholar
  124. 124.
    Engel E, Keller S, Dreizler RM (1996) Generalized gradient approximation for the relativistic exchange-only energy functional. Phys Rev A 53:1367–1374Google Scholar
  125. 125.
    Karasiev VV, Ludeña EV, Shukruto OA (2004) Relativistic Dirac-Fock exchange and Breit interaction energy functionals based on the local-density approximation and the self-consistent multiplicative constant method. Phys Rev A 69:052509Google Scholar
  126. 126.
    Mayer M, Häberlen OD, Rösch N (1996) Relevance of relativistic exchange-correlation functionals and of finite nuclei in molecular density-functional calulations. Phys Rev A 54:4775Google Scholar
  127. 127.
    Varga S, Engel E, Sepp W-D, Fricke B (1999) Systematic study of the Ib diatomic molecules Cu2, Ag2, and Au2 using advanced relativistic density functionals. Phys Rev A 59:4288Google Scholar
  128. 128.
    Varga S, Fricke B, Nakamatsu H, Mukoyama T, Anton J, Geschke D, Heitmann A, Engel E, Bastug T (2000) Four-component relativistic density functional calculations of heavy diatomic molecules. J Chem Phys 112:3499Google Scholar
  129. 129.
    Pipek J, Mezey PG (1989) A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J Chem Phys 90:4916Google Scholar
  130. 130.
    Strange P (1998) Relativistic quantum mechanics with applications in condensed matter and atomic physics. Cambridge University Press, CambridgeGoogle Scholar
  131. 131.
    Bast R, Heßelmann A, Salek P, Helgaker T, Saue T (2008) Static and frequency-dependent dipole-dipole polarizabilities of all closed-shell atoms up to radium: a four-component relativistic DFT study. Chem Phys Chem 9:445–453Google Scholar
  132. 132.
    Schmidbaur H, Mandl JR, Wagner FE, van de Vondel DF, van der Kelen GP (1976) ESCA and Mössbauer study of compounds of gold in the oxidation states +I, +II, and +III. J Chem Soc Chem Commun 170–172Google Scholar
  133. 133.
    Parish RV (1982) Gold and Mössbauer Spectroscopy. Gold Bull. 15:51–63Google Scholar
  134. 134.
    Takeda M, Takahashi M, Ito Y, Takano T, Bennett MA, Bhargava SK (1990) 197Au Mössbauer spectra of binuclear gold(I) and gold(II) complexes containing bridging cyclometalated arylphosphine or arylarsine ligands. Chem Lett 543–546Google Scholar
  135. 135.
    Bhargava SK, Mohr F, Takahashi M, Takeda M (2001) 197Au Mössbauer spectroscopy studies of some cyclometalated gold dimers. Bull Chem Soc Jpn 74:1051–1053Google Scholar
  136. 136.
    Bennett MA, Mirzadeh N, Privér SH, Takahashi M, Bhargava SK (2009) 197Au Mössbauer spectroscopic studies of cyclometalated gold dimers containing \(2-\hbox{C}_6\hbox{F}_4\hbox{PPh}_2\) ligands. Bull Chem Soc Jpn 82:1506–1509Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefan Knecht
    • 1
  • Samuel Fux
    • 2
  • Robert van Meer
    • 3
  • Lucas Visscher
    • 3
  • Markus Reiher
    • 2
  • Trond Saue
    • 4
  1. 1.Institute de Chimie de StrasbourgCNRS et Université de Strasbourg, Laboratoire de Chimie QuantiqueStrasbourgFrance
  2. 2.ETH Zurich, Laboratorium für Physikalische ChemieZurichSwitzerland
  3. 3.Amsterdam Center for Multiscale ModelingVU University AmsterdamHV AmsterdamThe Netherlands
  4. 4.Laboratoire de Chimie et Physique Quantique (CNRS UMR 5626), IRSAMCUniversité Paul SabatierToulouse cedexFrance

Personalised recommendations