Advertisement

Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 507–515 | Cite as

Cyclic dimers of tetrafluorobutatriene

  • Christian Ehm
  • Dieter LentzEmail author
Regular Article

Abstract

1,1,4,4-Tetrafluorobutatriene polymerizes even at −78 °C within a short time yielding a red insoluble polymer. Possible closed-shell cyclic dimers and oligomers resulting from several reaction paths were analyzed by computational methods—with CCSDT/cc-pVTZ as the highest order calculation and several other calculations of lower level. For a better understanding of fluorination effects, the perhydrogen triene dimers were included in this study. The destabilization of the central cumulenic double bond of tetrafluorobutatriene relative to ethylene and the further destabilizing fluorine substitution makes the formation of most of the dimers exothermic with only one exception for the perfluoro derivatives. Astonishingly, the geometry of some of the discussed molecules is highly affected by fluorine substitution, while for others there is nearly no effect on the geometry of the carbon backbone. 19F-NMR shifts of the potential dimers were calculated using the GIAO method.

Keywords

Cumulenes Dimerization Coupled cluster GIAO 

Notes

Acknowledgments

We appreciate the support from the Deutsche Forschungsgemeinschaft (DFG), the Graduate School (GK 1582) “Fluorine as a key element” and the High Performance Computing Group at the ZEDAT of the Freie Universität Berlin for generous computer time.

Supplementary material

214_2011_890_MOESM1_ESM.doc (128 kb)
Supplementary material 1 (DOC 128 kb)

References

  1. 1.
    Martin EL, Sharkey WH (1959) J Am Chem Soc 81:5256–5258CrossRefGoogle Scholar
  2. 2.
    Sangermano M, Di Gianni A, Bongiovanni R, Priola A, Voit B, Pospiech D, Appelhans D (2005) Macromol Mater Eng 290:721–725CrossRefGoogle Scholar
  3. 3.
    Schubert MW, Liddicoet TH, Lanka WA (1952) J Am Chem Soc 74:569CrossRefGoogle Scholar
  4. 4.
    Kloster-Jensen E, Wirz J (1975) Helv Chim Act 58:162–177CrossRefGoogle Scholar
  5. 5.
    Heinrich B, Roedig A (1968) Angew Chem Int Ed 7:375–376CrossRefGoogle Scholar
  6. 6.
    van Remoortere FB, Boer FP (1969) Angew Chem Int Ed 8:597–598CrossRefGoogle Scholar
  7. 7.
    van Remoortere FB, Boer FP (1970) J Am Chem Soc 92:3355–3360CrossRefGoogle Scholar
  8. 8.
    Brand K (1921) Ber Dtsch Chem Ges B Abhandlungen 54B:1987–2006CrossRefGoogle Scholar
  9. 9.
    Berkovitch-Yellin Z, Lahav M, Leiserowitz L (1974) J Am Chem Soc 96:918–920CrossRefGoogle Scholar
  10. 10.
    Iyoda M, Otani H, Oda M (1986) J Am Chem Soc 108:5371–5372CrossRefGoogle Scholar
  11. 11.
    Gaussian 03, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin, KN, Burant JC, Millam, JM, Iyengar, SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Inc., Wallingford CT, 2004Google Scholar
  12. 12.
    Woodcock HL, Schaefer HF III, Schreiner PR (2002) J Phys Chem A 106:11923–11931CrossRefGoogle Scholar
  13. 13.
    Zhao Y, Truhlar DG (2006) J Phys Chem A 110:10478–10486CrossRefGoogle Scholar
  14. 14.
    Ehm C, Akkerman FA, Lentz D (2010) J Fluor Chem 131:1173–1181Google Scholar
  15. 15.
    Lentz D, Paschke M (2004) Z Anorg Allg Chem 630:973–976CrossRefGoogle Scholar
  16. 16.
    Sinha PS, Boesch EB, Gu C, Wheeler RA, Wilson AK (2004) J Phys Chem A 108:9213–9217CrossRefGoogle Scholar
  17. 17.
    Ehm C, Lentz D (2010) Chem Commun 14:2399–2401CrossRefGoogle Scholar
  18. 18.
    Bally T (2006) Angew Chem Int Ed 47:6616–6619CrossRefGoogle Scholar
  19. 19.
    Ehm C, Lentz D (2010) J Phys Chem A 114:3609–3614CrossRefGoogle Scholar
  20. 20.
    Diels O, Alder K (1928) Liebigs Ann Chem 460:98CrossRefGoogle Scholar
  21. 21.
    Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G (2002) Angew Chem Int Ed 41:1668CrossRefGoogle Scholar
  22. 22.
    Corey EJ (2002) Angew Chem Int Ed 41:1650–1667CrossRefGoogle Scholar
  23. 23.
    Lentz D, Patzschke M, Bach A, Scheins S, Luger P (2003) Org Biomol Chem 1:409–414CrossRefGoogle Scholar
  24. 24.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  25. 25.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  26. 26.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  28. 28.
    Ochterski JW, Petterson GA, Frisch MJ, Montgomery JA Jr (2000) J Chem Phys 112:6532–6542CrossRefGoogle Scholar
  29. 29.
    Ochterski JW, Petterson GA, Montgomery JA Jr (1996) J Chem Phys 104:2598–2619CrossRefGoogle Scholar
  30. 30.
    Ochterski JW, Petterson GA, Frisch MJ, Montgomery JA Jr (1999) J Chem Phys 110:2822–2829CrossRefGoogle Scholar
  31. 31.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776CrossRefGoogle Scholar
  32. 32.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Poplem JA (1999) J Chem Phys 110:4703–4709CrossRefGoogle Scholar
  33. 33.
    London F (1937) J Phys Radium 8:397–409CrossRefGoogle Scholar
  34. 34.
    Ditchfield R (1974) Mol Phys 27:789–807CrossRefGoogle Scholar
  35. 35.
    Wolinski K, Himton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  36. 36.
    Bach A, Lentz D, Luger P, Messerschmidt M, Olesch C, Patzschke M (2002) Angew Chem 114:311–313; Angew Chem Int Ed 41:296–299Google Scholar
  37. 37.
    Akkerman FA, Kickbusch R, Lentz D (2008) Chem Asian J 3:719–731CrossRefGoogle Scholar
  38. 38.
    Mifsud N, Mellon V, Jin J, Topping CM, Echegoyen L, Smith DW (2007) Polym Int 56:1142–1146CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für Chemie und Biochemie, Abt. Anorganische ChemieFreie Universität BerlinBerlinGermany

Personalised recommendations