Theoretical Chemistry Accounts

, Volume 129, Issue 1, pp 3–13 | Cite as

Using multipole point charge distributions to provide the electrostatic potential in the variational explicit polarization (X-Pol) potential

  • Hannah R. Leverentz
  • Jiali Gao
  • Donald G. Truhlar
Regular Article


The equations defining the variational explicit polarization (X-Pol) potential introduced in earlier work are modified in the present work so that multipole point charge distributions are used instead of Mulliken charges to polarize the monomers that comprise the system. In addition, when computing the electrostatic interaction between a monomer whose molecular orbitals are being optimized and a monomer whose electron density is being used to polarize the first monomer, the electron densities of both monomers are represented by atom-centered multipole point charge distributions. In the original formulation of the variational X-Pol potential, the continuous electron density of the monomer being optimized interacts with external Mulliken charges, but this corresponds to the monopole truncation in a multipole expansion scheme in the computation of the Fock matrix elements of the given monomer. The formulation of the variational X-Pol potential introduced in this work (which we are calling the “multipole variational X-Pol potential”) represents the electron density of the monomer whose wave function is being variationally optimized in the same way that it represents the electron densities of external monomers when computing the Coulomb interactions between them.


Explicit polarization (X-Pol) Polarizable force field Fragment-based molecular orbital method Atom-based multipole moments 



This work was supported in part by the National Institutes of Health (grant no. GM46736 and RC1-GM091445) and the National Science Foundation (grant no. CHE09-56776).


  1. 1.
    Xie W, Gao J (2007) J Chem Theory Comput 3:1890CrossRefGoogle Scholar
  2. 2.
    Xie W, Song L, Truhlar DG, Gao J (2008) J Chem Phys 128:234108-1Google Scholar
  3. 3.
    Xie W, Song L, Truhlar DG, Gao J (2008) J Phys Chem B 112:14124CrossRefGoogle Scholar
  4. 4.
    Xie W, Orozco M, Truhlar DG, Gao J (2009) J Chem Theory Comput 5:459CrossRefGoogle Scholar
  5. 5.
    Song L, Han J, Lin Y, Xie W, Gao J (2009) J Phys Chem A 113:11656CrossRefGoogle Scholar
  6. 6.
    Mulliken RS (1955) J Chem Phys 23:1833CrossRefGoogle Scholar
  7. 7.
    Gao J (1998) J Chem Phys 109:2346CrossRefGoogle Scholar
  8. 8.
    Li J, Zhu T, Cramer CJ, Truhlar DG (1998) J Phys Chem A 102:1820CrossRefGoogle Scholar
  9. 9.
    Pople JA, Beveridge D (1970) Approximate molecular orbital theory. McGraw-Hill, New YorkGoogle Scholar
  10. 10.
    Stewart JP (1990) J Comput-Aided Mol Design 4:1CrossRefGoogle Scholar
  11. 11.
    Sokalski WA, Poirier RA (1983) Chem Phys Lett 98:86CrossRefGoogle Scholar
  12. 12.
    Sokalski WA, Sawaryn A (1987) J Chem Phys 87:526CrossRefGoogle Scholar
  13. 13.
    Koster AM, Kolle C, Jug K (1993) J Chem Phys 99:1224CrossRefGoogle Scholar
  14. 14.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899CrossRefGoogle Scholar
  15. 15.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902CrossRefGoogle Scholar
  16. 16.
    Stewart JJP (1989) J Comp Chem 10:209CrossRefGoogle Scholar
  17. 17.
    Stewart JJP (1989) J Comp Chem 10:221CrossRefGoogle Scholar
  18. 18.
    Dewar MJS, Thiel W (1977) Theoret Chim Acta 46:89CrossRefGoogle Scholar
  19. 19.
    Adamovic I, Freitag MA, Gordon MS (2003) J Chem Phys 118:6725CrossRefGoogle Scholar
  20. 20.
    Langner KM, Sokalski WA, Leszczynski J (2007) J Chem Phys 127:111102CrossRefGoogle Scholar
  21. 21.
    Roothaan CCJ (1951) Rev Mod Phys 23:69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hannah R. Leverentz
    • 1
  • Jiali Gao
    • 1
  • Donald G. Truhlar
    • 1
  1. 1.Department of Chemistry and Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations