Advertisement

Theoretical Chemistry Accounts

, Volume 130, Issue 4–6, pp 711–724 | Cite as

(Hyper)polarizability density analysis for open-shell molecular systems based on natural orbitals and occupation numbers

  • Masayoshi NakanoEmail author
  • Hitoshi Fukui
  • Takuya Minami
  • Kyohei Yoneda
  • Yasuteru Shigeta
  • Ryohei Kishi
  • Benoît Champagne
  • Edith Botek
  • Takashi Kubo
  • Koji Ohta
  • Kenji Kamada
Regular Article

Abstract

We have developed a method for analyzing the (hyper)polarizabilities of open-shell molecular systems. This method employs the (hyper)polarizability densities based on the natural orbitals and occupation numbers, which enables us to analyze the contributions of odd electrons having various open-shell (diradical) characters. Within broken-symmetry, i.e., spin-unrestricted, single-determinant molecular orbital and density functional theory approaches, we can also remove the spin contamination effects on these quantities through spin projection. To do that, an approximate spin projected method has been elaborated and applied to the analysis of the (hyper)polarizability of multi-radical systems. As examples, typical open-shell singlet systems, 1,3-dipoles and rectangular graphene nanoflakes, are examined.

Keywords

Hyperpolarizability Open-shell molecule Diradical Natural orbital Broken-symmetry method Spin projection 

Notes

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research (Nos. 21350011 and 20655003) and “Japan-Belgium Cooperative Program” (J091102006) from Japan Society for the Promotion of Science (JSPS), and the global COE (center of excellence) program “Global Education and Research Center for Bio-Environmental Chemistry” of Osaka University. Theoretical calculations were partly performed using Research Center for Computational Science, Okazaki, Japan. E.B. thanks the Interuniversity Attraction Pole on “Functional Supramolecular Systems” (IUAP No. P6-27) for her postdoctoral grant. This work has also been supported by the Academy Louvain (ARC “Extended-π-Conjugated Molecular Tinkertoys for Optoelectronics, and Spintronics”) and by the Belgian Government (IUAP No P06-27 “Functional Supramolecular Systems”).

References

  1. 1.
    Salem L, Rowland C (1972) Angew Chem Int Ed 11:92CrossRefGoogle Scholar
  2. 2.
    Borden WT (ed) (1982) Diradicals. Wiley-Interscience, New YorkGoogle Scholar
  3. 3.
    Rajca A (1994) Chem Rev 94:871CrossRefGoogle Scholar
  4. 4.
    Klessinger M, Michl J (1995) Excited states and photo-chemistry of organic molecules, revised and improved english-language edition. Wiley-VCH, New YorkGoogle Scholar
  5. 5.
    Borden WT, Davidson ER (1977) J Am Chem Soc 99:4587CrossRefGoogle Scholar
  6. 6.
    Adam W, Borden WT, Burda C, Foster H, Heidenfelder T, Heubes M, Hrovat DA, Kita F, Lewis SB, Scheutzow D, Wirz J (1998) J Am Cem Soc 120:593CrossRefGoogle Scholar
  7. 7.
    Staroverov VN, Davidson ER (2000) J Am Chem Soc 122:186CrossRefGoogle Scholar
  8. 8.
    Abe M, Adam W, Hara M, Hattori M, Majima T, Nojima M, Tachibana K, Tojo S (2002) J Am Chem Soc 124:6540CrossRefGoogle Scholar
  9. 9.
    Jung Y, Head-Gordon M (2003) Chem Phys Chem 4:522CrossRefGoogle Scholar
  10. 10.
    Scheschkewitz D, Amii H, Gomitzka H, Schoeller WW, Bourissou D, Bertrand G (2002) Science 295:1880CrossRefGoogle Scholar
  11. 11.
    Cui C, Brynda M, Olmstead MM, Power PP (2004) J Am Chem Soc 126:6510CrossRefGoogle Scholar
  12. 12.
    Paci I, Johnson JC, Chen X, Rana G, Popovic D, David DE, Nozik AJ, Ratner MA, Michl J (2006) J Am Chem Soc 128:16546CrossRefGoogle Scholar
  13. 13.
    Suaud N, Bonnet ML, Boilleau C, Labéguerie P, Guihéry N (2009) J Am Chem Soc 131:715CrossRefGoogle Scholar
  14. 14.
    Houk KN, Lee PS, Nendel M (2001) J Org Chem 66:5517CrossRefGoogle Scholar
  15. 15.
    Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416CrossRefGoogle Scholar
  16. 16.
    Chen Z, Jiang D, Lu X, Bettinger HF, Dai S, PvR Schleyer, Houk KN (2007) Org Lett 9:5449CrossRefGoogle Scholar
  17. 17.
    Hachmann J, Dorando JJ, Avilés M, Chan GK-L (2007) J Chem Phys 127:134309CrossRefGoogle Scholar
  18. 18.
    Jiang D, Dai S (2008) J Phys Chem A 112:332CrossRefGoogle Scholar
  19. 19.
    Tönshoff C, Bettinger HF (2010) Angew Chem Int Ed 49:4125. doi: 10.1002/anie.200906355 Google Scholar
  20. 20.
    Nagai H, Nakano M, Yoneda K, Kishi R, Takahashi H, Shimizu A, Kubo T, Kamada K, Ohta K, Botek E, Chanpagne B (2010) Chem Phys Lett 489:212CrossRefGoogle Scholar
  21. 21.
    Trinquier G, Suaud, N, Malrieu JP (2010) Chem Eur J 16:8762Google Scholar
  22. 22.
    Wang WL, Meng S, Kaxiras E (2008) Nano Lett 8:241CrossRefGoogle Scholar
  23. 23.
    Yazyev OV, Wang WL, Meng S, Kaxiras E (2008) Nano Lett 8:766CrossRefGoogle Scholar
  24. 24.
    Ezawa M (2007) Phys Rev B 76:245415CrossRefGoogle Scholar
  25. 25.
    Vandeschuren M, Hermet P, Meunier V, Henrard L, Lambin Ph (2008) Phys Rev B 78:195401CrossRefGoogle Scholar
  26. 26.
    F-Rossier J, Palacios JJ (2007) Phys Rev Lett 99:177204CrossRefGoogle Scholar
  27. 27.
    Dias JR (2008) Chem Phys Lett 467:200CrossRefGoogle Scholar
  28. 28.
    Son Y-W, Cohen ML, Louie SG (2006) Nature 444:347CrossRefGoogle Scholar
  29. 29.
    Kubo T, Shimizu A, Sakamoto M, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2005) Angew Chem Int Ed 44:6564CrossRefGoogle Scholar
  30. 30.
    Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T (2010) J Am Chem Soc 132:11021CrossRefGoogle Scholar
  31. 31.
    Lahti PM, Ichimura AS, Sanborn JA (2001) J Phys Chem A 105:251CrossRefGoogle Scholar
  32. 32.
    Serwinski PR, Lahti PM (2003) Org Lett 5:2099CrossRefGoogle Scholar
  33. 33.
    Ito A, Urabe M, Tanaka K (2007) Angew Chem Int Ed 46:3300CrossRefGoogle Scholar
  34. 34.
    Matsuda K, Irie M (2001) Chem Eur J 7:3466CrossRefGoogle Scholar
  35. 35.
    Rajca A, Shiraishi K, Pink M, Rajca S (2007) J Am Chem Soc 129:7232CrossRefGoogle Scholar
  36. 36.
    Rajca A, Vale M, Rajca S (2008) J Am Chem Soc 130:9099CrossRefGoogle Scholar
  37. 37.
    Train C, Norel L, Baumgarten M (2009) Coord Chem Rev 253:2342CrossRefGoogle Scholar
  38. 38.
    Shimizu A, Uruichi M, Yakushi K, Matsuzaki H, Okamoto H, Nakano M, Hirao Y, Matsumoto K, Kurata H, Kubo T (2009) Angew Chem Int Ed 48:5482CrossRefGoogle Scholar
  39. 39.
    Huang J, Kertesz M (2007) J Am Chem Soc 129:1634CrossRefGoogle Scholar
  40. 40.
    Tian YH, Kertesz M (2010) J Am Chem Soc 132:10648CrossRefGoogle Scholar
  41. 41.
    Yamaguchi K (1990) In: Carbo R, Klobukowski M (eds) Self-consistent field: theory and applications. Elsevier, Amsterdam, p 727Google Scholar
  42. 42.
    Nakano M, Kishi R, Nitta T, Kubo T, Nakasuji K, Kamada K, Ohta K, Champagne B, Botek E, Yamaguchi K (2005) J Phys Chem A 109:885CrossRefGoogle Scholar
  43. 43.
    Nakano M, Kishi R, Ohta S, Takebe A, Takahashi H, Furukawa S, Kubo T, Morita Y, Nakasuji K, Yamaguchi K, Kamada K, Ohta K, Champagne B, Botek E (2006) J Chem Phys 125:74113CrossRefGoogle Scholar
  44. 44.
    Nakano M, Kishi R, Ohta S, Takahashi H, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2007) Phys Rev Lett 99:033001CrossRefGoogle Scholar
  45. 45.
    Nakano M, Kubo T, Kamada K, Ohta K, Kishi R, Ohta S, Nakagawa N, Takahashi H, Furukawa S, Morita Y, Nakasuji K (2006) Chem Phys Lett 418:142CrossRefGoogle Scholar
  46. 46.
    Ohta S, Nakano M, Kubo T, Morita Y, Nakasuji K, Ohta S, Nakano M, Kubo T, Kamada K, Ohta K, Kishi R, Nakagawa N, Champagne B, Botek E, Takebe A, Umezaki S, Nate M, Takahashi H, Furukawa S, Morita Y, Nakasuji K, Yamaguchi K (2007) J Phys Chem A 111:3633CrossRefGoogle Scholar
  47. 47.
    Fukui H, Kishi R, Minami T, Nagai H, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek B, Nakano M (2008) J Phys Chem A 112:8423CrossRefGoogle Scholar
  48. 48.
    Serrano-Andrés L, Avramopoulos A, Li J, Labéguerie P, Bégué D, Kellö V, Papadopoulos MG (2009) J Chem Phys 131:134312CrossRefGoogle Scholar
  49. 49.
    Nakano M, Nagai H, Fukui H, Yoneda K, Kishi R, Takahashi T, Shimizu A, Kubo T, Kamada K, Ohta K, Champagne B, Botek B (2008) Chem Phys Lett 467:120CrossRefGoogle Scholar
  50. 50.
    Kamada K, Ohta K, Kubo T, Shimizu A, Morita Y, Nakasuji K, Kishi R, Ohta S, Furukawa S, Takahashi H, Botek E, Champagne B, Nakano M (2007) Angew Chem Int Ed 46:3544CrossRefGoogle Scholar
  51. 51.
    Nakano M, Yoneda K, Kishi R, Takahashi T, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2009) J Chem Phys 131:114316CrossRefGoogle Scholar
  52. 52.
    Nakano M, Shigemoto I, Yamada S, Yamaguchi K (1995) J Chem Phys 103:4175CrossRefGoogle Scholar
  53. 53.
    Jha PC, Rinkevicius Z, Ågren H (2009) ChemPhysChem 10:817CrossRefGoogle Scholar
  54. 54.
    Li ZJ, Wang FF, Li ZR, Xu HL, Huang XR, Wu D, Chen W, Yu GT, Gu FL, Aoki Y (2009) Phys Chem Chem Phys 11:402CrossRefGoogle Scholar
  55. 55.
    Takatsuka K, Fueno T, Yamaguchi K (1978) Theor Chim Acta 48:175CrossRefGoogle Scholar
  56. 56.
    Staroverov VN, Davidson E (2000) Chem Phys Lett 330:161CrossRefGoogle Scholar
  57. 57.
    Head-Gordon M (2003) Chem Phys Lett 372:508CrossRefGoogle Scholar
  58. 58.
    Yamanaka S, Okumura M, Nakano M, Yamaguchi K (1994) J Mol Structure (Theochem) 310:205CrossRefGoogle Scholar
  59. 59.
    Kitagawa Y, Saito T, Nakanishi Y, Kataoka Y, Matsui T, Kawakami T, Okumura M, Yamaguchi K (2009) J Phys Chem A 113:15041CrossRefGoogle Scholar
  60. 60.
    Yamaguchi K (1975) Chem Phys Lett 33:330CrossRefGoogle Scholar
  61. 61.
    Kishi R, Bonness S, Yoneda K, Takahashi H, Nakano M, Botek E, Champagne B, Kubo T, Kamada K, Ohta K, Tsuneda T (2010) J Chem Phys 132:094107CrossRefGoogle Scholar
  62. 62.
    Stoll H, Savin A (1985) In: Dreizler R, da Providencia J (eds) Density Functional Methods in Physics, Plenum, New York, p 177Google Scholar
  63. 63.
    Leininger T, Stoll H, Werner H-J, Savin A (1997) Chem Phys Lett 275:151CrossRefGoogle Scholar
  64. 64.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540CrossRefGoogle Scholar
  65. 65.
    Tawada Y, Tsuneda T, Yanigasawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425CrossRefGoogle Scholar
  66. 66.
    Hunt KLC (1984) J Chem Phys 80:393CrossRefGoogle Scholar
  67. 67.
    Hunt KLC (1995) J Chem Phys 103:3552CrossRefGoogle Scholar
  68. 68.
    Tisko EL, Li X, Hunt KLC (1995) J Chem Phys 103:6873CrossRefGoogle Scholar
  69. 69.
    Geskin VM, Brédas JL (1998) J Chem Phys 109:6163CrossRefGoogle Scholar
  70. 70.
    Leclercq A, Zojer E, Jang SH, Barlow S, Geskin V, Jen AKY, Marder SR, Brédas JL (2006) J Chem Phys 124:044510Google Scholar
  71. 71.
    Ye A, Autschbach J (2006) J Chem Phys 124:234101CrossRefGoogle Scholar
  72. 72.
    Krylov AI (2001) Chem Phys Lett 338:375CrossRefGoogle Scholar
  73. 73.
    Krylov AI (2001) Chem Phys Lett 350:522CrossRefGoogle Scholar
  74. 74.
    Sekino H, Bartlett RJ (1993) J Chem Phys 98:3022CrossRefGoogle Scholar
  75. 75.
    Nakano M, Kishi R, Nakagawa N, Ohta S, Takahashi H, Furukawa S, Kamada K, Ohta K, Champagne B, Botek E, Yamada S, Yamaguchi K (2006) J Phys. Chem A 110:4238CrossRefGoogle Scholar
  76. 76.
    Champagne B, Botek B, Nakano M, Nitta T, Yamaguchi K (2005) J Chem Phys 122:114315CrossRefGoogle Scholar
  77. 77.
    Champagne B, Perpète EA, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489 Erratum (1999) 110:11664CrossRefGoogle Scholar
  78. 78.
    Champagne B, Perpète EA, Jacquemin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C (2000) J Phys Chem A 104:4755CrossRefGoogle Scholar
  79. 79.
    van Gisbergen SJA, Schipper PRT, Gritsenko OV, Baerends EJ, Snijders JG, Champagne B, Kirtman B (1999) Phys Rev Lett 83:694CrossRefGoogle Scholar
  80. 80.
    Kummel S, Kronik L, Perdew JP (2004) Phys Rev Lett 93:213002CrossRefGoogle Scholar
  81. 81.
    Mori-Sanchez P, Wu Q, Yang W (2003) J Chem Phys 119:11031CrossRefGoogle Scholar
  82. 82.
    Sekino H, Maeda Y, Kamiya M, Hirao K (2007) J Chem Phys 126:014107CrossRefGoogle Scholar
  83. 83.
    Kirtman B, Bonness S, Ramirez-Solis A, Champagne B, Matsumoto H, Sekino H (2008) J Chem Phys 128:114108CrossRefGoogle Scholar
  84. 84.
    Bonness S, Fukui H, Yoneda K, Kishi R, Champagne B, Botek E, Nakano M (2010) Chem Phys Lett 493:195CrossRefGoogle Scholar
  85. 85.
    Nakano M, Takebe A, Kishi R, Ohta S, Nate M, Kubo T, Kamada K, Ohta K, Champagne B, Botek E, Takahashi H, Furukawa S, Morita S, Nakasuji K (2006) Chem Phys Lett 432:473CrossRefGoogle Scholar
  86. 86.
    Song J-W, Hirosawa T, Tsuneda T, Hirao K (2007) J Chem Phys 126:154105CrossRefGoogle Scholar
  87. 87.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CTGoogle Scholar
  88. 88.
    Filatov M, Cremer D (2005) J Chem Phys 123:124101CrossRefGoogle Scholar
  89. 89.
    Nakano M, Yamada S, Shigemoto I, Yamaguchi K (1996) Chem Phys Lett 250:247CrossRefGoogle Scholar
  90. 90.
    Nakano M, Yamaguchi K (1994) Phys Rev A 50:2989CrossRefGoogle Scholar
  91. 91.
    Nakano M, Yamaguchi K, Matsuzaki Y, Tanaka K, Yamabe T (1995) J Chem Phys 102:2986CrossRefGoogle Scholar
  92. 92.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51CrossRefGoogle Scholar
  93. 93.
    Savin A, Flad HJ (1995) Int J Quantum Chem 56:327CrossRefGoogle Scholar
  94. 94.
    Gori-Giorgi P, Savin A (2006) Phys Rev A 73:3250CrossRefGoogle Scholar
  95. 95.
    Fromager E, Toulouse J, Jensen HJA (2007) J Chem Phys 126:074111CrossRefGoogle Scholar
  96. 96.
    Kusakabe K (2001) J Phys Soc Jpn 70:2038CrossRefGoogle Scholar
  97. 97.
    Yamanaka S, Nakata K, Takada T, Kusakabe K, Ugalde JM, Yamaguchi K (2006) Chem Lett 35:242CrossRefGoogle Scholar
  98. 98.
    Yamanaka S, Nakata K, Ukai T, Takada T, Yamaguchi K (2006) Int J Quantum Chem 16:3312CrossRefGoogle Scholar
  99. 99.
    Miehlich B, Stoll H, Savin A (1997) Mol Phys 91:527Google Scholar
  100. 100.
    Gräfenstein J, Cremer D (2000) Chem Phys Lett 316:569CrossRefGoogle Scholar
  101. 101.
    Gusarov S, Malmqvist PÅ, Lindh R, Roos BO (2004) Theor Chem Acc 112:84CrossRefGoogle Scholar
  102. 102.
    Pérez-Jiménez AJ, Pérez-Jord JM (2007) Phys Rev A 75:012503CrossRefGoogle Scholar
  103. 103.
    Takeda R, Yamanaka S, Yamaguchi K (2002) Chem Phys Lett 366:321CrossRefGoogle Scholar
  104. 104.
    Takeda R, Yamanaka S, Yamaguchi K (2004) Int J Quantum Chem 96:463Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Masayoshi Nakano
    • 1
    Email author
  • Hitoshi Fukui
    • 1
  • Takuya Minami
    • 1
  • Kyohei Yoneda
    • 1
  • Yasuteru Shigeta
    • 1
  • Ryohei Kishi
    • 1
  • Benoît Champagne
    • 2
  • Edith Botek
    • 2
  • Takashi Kubo
    • 3
  • Koji Ohta
    • 4
  • Kenji Kamada
    • 4
  1. 1.Department of Materials Engineering Science, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.Laboratoire de Chimie Théorique, Facultés Universitaires Notre-Dame de la Paix (FUNDP)NamurBelgium
  3. 3.Department of Chemistry, Graduate School of ScienceOsaka UniversityToyonakaJapan
  4. 4.Research Institute for Ubiquitous Energy DevicesNational Institute of Advanced Industrial Science and Technology (AIST)IkedaJapan

Personalised recommendations